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Introduction to Linear Algebra



Preface

Linear algebra is the earlier of two mathematical disciplines devoted
to the study of that broad and useful notion called linearity. The other
discipline, linear analysis, involves much more sophisticated techniques
and consequently occurs much later in one’s career. In the present
instance a study of the lesser discipline foreshadows practically every one
of the conclusions of the more subtle topic. Therefore a student of linear
algebra is in the fortunate position of gaining a great deal of insight into
more advanced matters as he achieves a mastery of this subject.

The most significant of one’s early experiences with linearity arise
from two sources: the study of lines and planes in analytic geometry and
the study of systems of linear algebraic equations. We assume that
the first of these is reasonably well understood, at least on an intuitive
basis. Unfortunately, experience shows that the second topic is known
only on a primitive level by students entering a linear algebra course.

The main commitment of this book is to a geometric treatment
of linear algebra. This is achieved by an early introduction of the inner
product and the associated notions of length and angle. Even though the
inner product is not always used, it is always available. The geometrical
viewpoint is further aided by employment of coordinate-free notation in
the presentation of an essentially determinant-free theory. Experience has
shown us that student resistance to notions of length and angle is lower
than student resistance to such items as the axioms for a vector space and
the notion of subspace. For this reason the book is written in such a way
that the Euclidean vector spaces R and their subspaces provide an ade-
quate format for realization of most material. This is especially desirable
when the text is read by a college sophomore. The instructor might be
advised to begin Chap. 2 with a very light treatment of the axioms for a
vector space and of the notion of subspace in order to get to the inner
product as soon as possible.

It is a goal of this book to give the college sophomore a one-semester
view of linear algebra which includes a comprehensive look at the spectral
theorem for symmetric operators, Chaps. 1 to 5. Moreover, the additional
material in Chaps. 6 to 8 challenges juniors and seniors; it also permits
use of this text for a two-semester course. Chapter 1 gives a presen-

tation of the Gauss procedure for reducing linear systems of equations and
v



vi Preface

thus provides the student with his main tool for dealing with the subject
manually. Chapter 5 gives attention to the spectral theorem. In order
to cover this material in one semester it may be necessary to make some
omissions. Dispensable sections are Sec. 3 and the end of See. 1 of Chap. 3,
Sec. 2 of Chap. 4, and Sec. 2 of Chap. 5.

We have received generous help from our colleagues. In particular,
Henry Leonard read various portions of the manuseript and made many
stimulating suggestions. Walter Noll is responsible not only for several
specific ideas used in the presentation (notably in the discussions of gradient
and of trace) but for instilling in the authors an appreciation of his profound
viewpoint toward linear algebra.

Joel Williamson was an active help in proofreading both the early
drafts and the final proofs. To him and to the other students who were
subjected to this experiment, our hope that their suffering was not in vain.
Our appreciation goes to Mary Ellen Hanlein (nee Kay), Judy Lewis, and
Ida Laquarta for typing various drafts of the manuseript.

A. D. Martin
V. J. Mizel

It is my sad duty to announce here that Allan Martin died shortly
after the main draft for this book was completed. His untimely death
removed from the scholastic community a fine mathematician and out-
standing pedagogue. It deprived me of a close friend. Vale, amice.

V. J. M. June 29, 1966

To the Student Whalever else you do, read the entire
Problems and Comments after each seclion. Otherwise you
will miss important topics not treated in the main body of the text.
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CHAPTER 1

Systems of Linear Equations,
Matrices, Arrows

In one way or another linear algebra is fundamentally concerned with
systems of linear equations. Although our approach to linear algebra is
geometric in every way possible, most applications of the concepts of the
subject involve at least one system of linear equations. For this reason
much of this first chapter is devoted to informing the reader of the manual
skill he will require in dealing with such systems. The rest of the chapter
treats matrices and arrows, topics which anticipate the basic notions of
vector space theory.

1. Linear systems and Gauss procedures

In the family of all linear systems there are those which have no
solutions, those which have only a single solution and those which have
many solutions. It is very important to a worker in this subject that he
be able to place a given system of equations into one of these three cate-
gories. Sometimes this can be done effortlessly and sometimes it cannot.
Certainly the system

r+y=1

z+y=0
has no solution, since there is no pair (x, i) of numbers x and y whose sum
1s simultaneously 1 and 0. On the other hand, the system

=1

y=x+2
has only one solution: (x,y) = (1, 3). Finally, the one-equation system

y+ax—1=0

has many solutions. Two of them are (z,y) = (0, 1) and (z,y) = (2, —1).
In fact, the totality of solutions of this equation is infinite; in a familiar
way it is identified with the totality of all points (z, y) in the plane of

1



2 Introduction to Linear Algebra [Chap. 1

analytic geometry which lie on the line with y-intercept 1 and slope —1
(I'ig. 1.1):

y+ax—1=0
Similarly, the preceding system (I'ig. 1.2)
z=1
y=2x4+2
y y

AN

\ (1,3)
\ (0,2)

» X
(1, 0)\ / . (1,0)

Fig. 1.1 Fig. 1.2

consists of the equations of two lines which intersect in a single point. The
remaining system (IFig. 1.3)
r+u
Tty

II
O -

L

Fig. 1.3

consists of the equations of two parallel lines which do not intersect at all.
On the other hand, the system

x4+ y+z4+2w=2
(1.1) 204+ y+z+4w =3
—3x+2y+z—Tw=1

does not yield its secrets as easily as do the three systems discussed above.
Nevertheless, many problems in the course of their solution demand that
the investigator acquire an intimate knowledge of systems which are at
least as complicated as (1.1). Some of these systems have infinitely many
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solutions, in which case it is manifestly impossible for a human being to
write them all down on a piece of paper. Others may have only a single
solution, whose explicit form is then required. In the former case we say
that the problem requires a descriptive solution, in the latter a numerical
solution. Whether the problem requires a desecriptive or a numerical so-
lution, or indeed has no solution at all, we must be able to simplify a system
of linear equations down to the bones. Therefore the next few pages are
devoted to describing a method of constructing for each linear system a
formula which gives all its solutions. The method is due to Gauss and
Jordan. It consists of a finite sequence of steps no one of which requires
the operator to guess or to make a creative decision. Aceordingly it can be
performed by a digital computer, and in this context it is called an
algorithm. 1In order to carry out the above program it would be desirable
to state the goal being pursued as well as the means to that goal. Un-
fortunately, it is considerably easier to deseribe the algorithm than to
describe the sort of final formula it produces. We will eventually survey
such results, but only after the course of action has been described.

A preliminary application to the very simple system
2% + 4y =1
(1.2) r— y=2

should help to clarify the idea of the method as well as fix the notation we
will use. We systematically modify (1.2) to arrive at a new system of
equations as follows:

2t +4y =1 3501] x+2y= W

z+2y=1% z+2y = Lg [1] —2[2]
Op=p==3 A8 gy 1 5= iz
z+0y= 335
(1.2a) 0x—|—y=—-{/2

In the above formalism we have introduced symbols of the sort i[i], and
[z_]ic_[i] to represent operations used in modifying a linear system.
Namely, ﬂ denotes replacement of equation 7 by its c-multiple while
[¢] + eld] denotes replacement of equation ¢ by its sum with the ¢c-multiple
of equation 7. It is understood that the system to which an operation is
to be applied is always the one most recently constructed.

The reader is undoubtedly aware of ways to bypass some of the steps
we have used in arriving at the final result * = 34, y = — 14, but in less
trivial cases the systematic nature of the technique is of great help.

Now consider the system (1.1). Certainly it would be simplified if
we were to multiply both sides of all three equations by zero:
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Ox 4+ 0y 4+ 0z + 0w =20
(1.1a) Ox + Oy + 0z + 0w = 0
Ox +0y + 0240w =20

However, the resulting system (1.1a) has the property that every quadruple
(z, ¥, 2, w) of numbers, z, y, 2z, and w is a solution of it. The system (1.1)
lacks this property as, for example, the quadruple (0, 0, 0, 0) is not one of
its solutions. The transition from (1.1) to (1.1a) is essentially a matter of
moving our attention from one problem to a second problem which has
nothing to do with the first. In order to avoid this kind of irrelevancy we
must pick our maneuvers with care.

(1.3) DeriniTioN. Admissibility. An operation on a system of equa-
tions is termed admissible if the resulting system has exactly the same
solutions as the original system. Any operation by which a solution is
lost or gained is tnadmassible.

Of course there are many admissible operations, but we shall be con-
cerned with only two:

(M) Multiplying an equation by a nonzero number: replacing [k] by
its e-multiple, ¢[k]

(A) Adding a multiple of one equation to another: replacing [7] by the
equation [7] + c[k]

An equally simple third operation, the interchange of equation [j] with
equation [k], is not included here because it is reducible to (M) and (A).
See Sec. 2, PC 15 (PC = Problems and Comments).

The operations (M) and (A) are both special cases of a compound
“Gauss” operation

(G) Replacing [7] by the equation b[j] + c[k], where b = 0

The fact that the above operations are all admissible is the underlying
reason for the success of the technique we will deseribe. As such, it is
sufficiently important to be prominently displayed.

(1.4) TuEOREM. Any operation of type (M), (A), or (G) when applied to
a system of equations leaves the set of solutions unchanged: operations (M),
(A), and (G) are admissible.

Since we have as yet no way to describe a general system of equations,
we cannot possibly give a proof of (1.4) here. The following remarks
however contain the gist of the proof, and a complete presentation will
be left to the problems in Sec. 2.

Consider the effect of applying the above operations to the following
system of equations.

2+ y+z=2
(1.5) 204+ y—2=3
4o+ 3y +2=7
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Since operations of type (M) and type (A) are both special cases of oper-
ations of type ((), we consider the effect of a typical operation of type (G)
on (1.5). If we replace [2] by b[2] + ¢[1], we get

Tt+yte=2
(1.50) @b+e)x+Ob+e)y+ (—=b+c)z=3b+ 2
dr 4+ 3y +2=7

Now if (z, v, 2) = (s, 2, $3) 1s a solution of (1.5), then the same numbers
also form a solution of (1.5a): the equality (2b 4 ¢)s; + (b + ¢)s; +
(=b 4+ ¢)s3 = 3b 4+ 2¢ follows from the equalities s; + s2 + s3 = 2 and
281 4+ s2 — s3 = 3 by laws of arithmetic. Thus the set of solutions of
(1.5a) includes every solution of (1.5), as well as (conceivably) others.

To show that as a matter of fact (1.5a) has no solutions which are not
also solutions of (1.5), so that (1.5) and (1.5a) have the same set of so-
lutions, it is necessary to observe that the system (1.5) itself is constructible
from (1.5a) by a step of type (G):

Replacing [2] by b71[2] — b~ le[1]

If we now repeat the reasoning of the preceding paragraph starting this
time with a typical solution of (1.5a), we will conclude as desired that (1.5a)
has no solutions which are not also solutions of (1.5).

(1.6) DerFiNiTION. Any finite sequence of operations of type (G) applied
to a system of equations is called a Gauss procedure.

We may now state an important result following immediately from
Theorem (1.4).

(1.7) TaEOREM. Any application of a Gauss procedure to a system of equa-
tions leaves the set of solutions unchanged: a Gauss procedure s an admissi-
ble operation.

Notice that Theorem (1.7) provides a justification for the method we
used earlier to solve the system of two linear equations (1.2). Since (1.2a)
was constructed from (1.2) by a sequence of four operations each of type
(G), we are assured that the solution of (1.2a), given by inspection, is
indeed the solution of (1.2) as well.

Now let us apply these methods to solve a somewhat more interesting
system.

(1.8) ExXAMPLE
20 +2y + 22+ w= —2
(L) 20+ y+2z2—w= 1
c+2y+4dz4+w=—1

The following Gauss procedure solves this system. It is in fact an
immediate extension of the technique used earlier to solve (1.2).

Stage 1. z-reduce the system: Choose an equation of (L) whose
z-coefficient is not zero; multiply this equation by a factor producing the
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x-coefficient unity; add a multiple of the modified equation to each of the
other equations so as to produce zero z-coefficients. In the present ex-
ample any equation will do, so we choose [1]. We then have

20 + 2y + 22 +w = —2 ] x4+ y+ z4+ Ww = —1

2r+ y+22—w= 1 2r+ y+2— w= 1[2]—2[1]

T+ 2y +dt+w=—1 S T+ 2+ 42+ w=_1[3]—1[1]
z+y+ 2+ Lw=—1

(Ly) Or —y+0z— 2w= 3

Oz +y + 32 + Lw 0

Stage 2. y-reduce (1,): Choose any equation of (L;) whose z-coef-
ficient is zero but whose y-coefficient is not zero; multiply this equation by
a factor producing the y-coefficient unity; add a multiple of the modified
equation to each of the other equations so as to produce zero y-coefficients.
In this case either [2] or [3] will do, so choose [2]. We then have

T4+ y+ 24+ w=—1 r+y+ 2+ Ww=—11[01]—1[2]

Oz —y+0z— 2w= 3 —12] Or+y+0z+ 2w=—3

O +y+3+%w= 0 Or4y+sedtow= oB"1
24+ 0y+ z— 3Bw= 2

(L) Ox+ y+0z+ 2w= —3

0x + Oy + 32 — 34w .3

Stage 3. z-reduce (l.): Choose an equation of (Ls) whose z- and
y-cocefficients are both zero but whose z-coefficient is not zero; multiply
this equation by a factor producing the z-coefficient unity; add a multiple
of the modified equation to each of the other equations so as to produce
zero z-coefficients. In this case only [3] will do. One then has

c+0y+ z2—3Hw= 2 r+0y+ 22— 3%w= 2 [0]—1[3]
Or+ y+0z2+ 2w= —3 O+ y+0z2+4+ 2w= —3
0r4+0y+3—3sw= 3_25B orqoy+ z—Lw= 1_
x+0y4+0z— w= 1
(Lg) Ox+ y+0z4+ 2w= —3
Oz +0y+ z— Lw= 1

Stage 4. w-reduce (L;): Choose an equation of (L) whose a-, y-,
and z-coefficients are all zero but whose w-coefficient is not zero; multiply
this equation by a factor producing the w-coefficient unity; ete. (L3) has
no such equation and so our Gauss procedure terminates with the system
(L), which 1s called a reduced form of (L).

From (L;) we have that (z, y, z, w) 1s a solution if and only if

T = w41
(L3) y=—2w—3
2= w41
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This shows that w may be chosen arbitrarily, and after each such choice
there is only one value for each of the quantities z, y, and z such that
(x, y, 2, w) is a solution of (). According to Theorem (1.7) the solutions
of (L;) coincide with the solutions of (L), so the above procedure has shown

that (L) has an infinite number of solutions, all of them displayed in
formula (L3).

Problems and Comments

1. Test the assertion in (1.8) that all solu{iBns of (L}) are solutions of (L) by
explicitly checking whether the solution of (Lj) eorrespondinmg to w = 3 solves (L).
Likewise for w = 0 and w = V2.

2. Use the admissible operations (M) and (A) to solve the following systems:

2x — 3y = 1 z+3y =5
@) T+ y=-—1 (b)2x+6y=—1
r—y= 1
© 4 +y=-1
3. Use the technique of Example (1.8) to solve the following systems:
20 +3y+ =z2z= b 20— y+3%z— w= 11
(a) =z - z= 1 (b) x —z4+ w=-—-2
2r — 9y — 11z = —5 —2r — 2y +22 — 3w = 4

4. By improvising where necessary on the technique of Example (1.8) solve
20 +2y — 2+ w= —1
s+ y+2— w 2
3r4+3y+ z+2w= 0

5. Consider the generalization of steps of type (G) obtained by discarding the
condition b # 0:

(€3} Replacement of [j] by b[j] + c[k]

Determine whether Theorem (1.4) holds with this definition; give either a proof or a
counterexample.

*6. Devise a Gauss procedure which, when applied to

z -+ 2y
T =y

1
3

(a)

yields

rT— y =
(h)r—f-{)y:—l

Hint: First solve both systems by the scheme used for (1.2).
7. Give conditions on the quantities ai, as, by, by, di, and dz so that

ax + by = di
ol axr + by = d»

has (z, y) = (1, 3) as its only solution.

* This symbol denotes moderately hard problems; ** denotes still harder ones.
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2. Gauss reduction of linear systems

In this section we will amplify the discussion of Gauss procedures
begun in Sec. 1. Up to now we have not even said what distinguishes a
linear system of equations from a nonlinear system.

(2.1) DeriniTION. Linear System. By a system of m linear equations

wm n unknowns i, T, . . ., T, 13 meant a system of the form
an®s + Aty + 0+ e = dy
(L) an®y + Auts + - 4 Qs = do
i1 + Aoy + - F QnTn = A
where a,; is a known real or complex number for each ¢ = 1,2,. .., m;
j=1,2,...,n By a solution of (L) is meant an n-tuple (si, 83, . . ., Sn)
of numbers s, 83, . .., s, which as values of z, x, . .., x, respectively

satisfy (L).

The subscripts on a;; designate the location of that coeflicient: ¢ is
the number of the equation and j is the number of the unknown where it
appears. Hence, for example, ai; should be read “a, one, one’ and ax
should be read ‘“‘a, two, one”’—not “a eleven’” and “a twenty-one,” re-
spectively.

Except for problems, we shall tacitly restrict ourselves to systems of
equations with real coefficients. Even though systems with real coeffi-
cients can have complex solutions we shall not utilize such solutions, so the
term solution will refer to real solutions only. However, we make the
observation that all the techniques and most of the remarks made about
Gauss procedures in this chapter apply equally well to the complex case.

All systems of equations which have appeared thus far are linear,
Examples of nonlinear systems are

12 + 2 — 23 1
Ty + 22 + 23t = 0

and sinz; + xs = 1

Next we wish to develop a more efficient notation for Gauss proce-
dures. Consider the system

204+ y— z2— w=2©6
(2.2) x4+ 2y —22+4+4w =25
x4+ y— z+3w=4

The system
221+ 2 — 23— =6
(2.2a) x + 22y — 225 + 4xs = 5
1+ s — X3+ 3%

does not differ from (2.2) in any interesting way provided that (x:, @, 3, x4)

Il
g
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is merely regarded as a notation for solutions of (2.2a) replacing the
notation (z, y, 2, w) for solutions of (2.2). That is, (2.2) and (2.2a) differ
only in the names employed for the unknowns. This is an inessential
difference, and to bypass it let us suppress unknowns entirely and write
for (2.2) the array

2 1 —1 —1 | 6
(2.3) 1 2 -2 4 | 5
1 1 —1 3 i 4

The array (2.3) is called a matriz. More completely, (2.3) is known as a
3 X 5 (“three by five”’) matrix since it has three rows and five columns.
Obviously (2.3) presents at one stroke all the significant information apply-
ing to the systems (2.2) and (2.2a): the values of the coefficients and the
values of the right sides. At the same time, the expression (2.3) is a more
compact way of referring to these systems than either expression (2.2) or
expression (2.2a).

(2.4) DeriNtTION. The matrix of the system of linear equations

(L) .......................
A1y + seis o Amaln = dm

iS thC m X (n + 1) array
| 1}
i dm

which incorporates the coefficients and right-hand sides of the given system.
[In some books [L] is called the “augmented” matrix of the system (L).]

(L]

SIS
s i
8.8
g =

Replacing a system of equations by its matrix consists basically in mere
suppression of the names of the unknowns. Therefore it is not surprising
that one can solve a system by simply applying a Gauss procedure directly
to its matrix. Using [k] to denote the kth row of a matrix as well as the
kth equation of a system permits us to deseribe the basic operations (M),
(A), and (G) practically as before:

(M) Multiplying a row by a nonzero number: replacing [k] by its
c-multiple, c¢[k]

(A)  Adding a multiple of one row to another: replacing [7] by [7] + c[k]

(G) Replacing [j] by the row b[j] 4 ¢[k], where b = 0

(2.5) ExawmrrLe. We solve the system

201 + xo — a3 =
(L) 1+ 2xs + a3

31‘1 —_ 31’3 = Z

Il
|
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