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Editorial

This fifth volume of Computational Technology Reviews includes a selection of pa-
pers on engineering optimisation which were originally presented as invited review
lectures at The Eleventh International Conference on Computational Structures Tech-
nology (CST 2012) and The Eighth International Conference on Engineering Com-
putational Technology (ECT 2012) held concurrently in Dubrovnik, Croatia from 4-7
September 2012. I am grateful to the authors and co-authors of the papers included in
this volume. Their contribution to these conferences and to this volume of Computa-
tional Technology Reviews is greatly appreciated.

Other papers presented at these conferences are published as follows:

e Other Invited Review Lectures from CST 2012 and ECT 2012 are published in:
Computational Technology Reviews, Volume 6, Saxe-Coburg Publications, Stir-
lingshire, Scotland, 2012.

e The Invited Lectures from CST 2012 and ECT 2012 are published in:
Computational Methods for Engineering Science, B.H.V. Topping, (Editor),
Saxe-Coburg Publications, Stirlingshire, Scotland, 2012.

e The Contributed Papers from CST 2012 are published in:
Proceedings of the Eleventh International Conference on Computational Struc-
tures Technology, B.H.V. Topping, (Editor), (Book of Summaries with online
delivery of full-text papers), Civil-Comp Press, Stirlingshire, Scotland, 2012.

e The Contributed Papers from ECT 2012 are published in:
Proceedings of the Eighth International Conference on Engineering Computa-
tional Technology, B.H.V. Topping, (Editor), (Book of Summaries with online
delivery of full-text papers), Civil-Comp Press, Stirlingshire, Scotland, 2012.

I am grateful to Jelle Muylle (Saxe-Coburg Publications) for his help in coordinating
the publication of this volume.

HERIOT Professor B.H.V. Topping
@WATT University of Pécs, Hungary
URIvESSTrY O pics UNIVERSITY & Heriot-Watt University, Edinburgh, UK
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Recent Developments in
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' Department of Mathematics, CMA, FCT-UNL, Caparica, Portugal
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Abstract

In practical applications it is common to have to optimise several conflicting objective
functions. Frequently, these functions are nondifferentiable or discontinuous, could
be subject to numerical noise and, or be of black-box type, preventing the use of
derivative-based techniques. In this paper an overview of some recent developments
in derivative-free multiobjective optimisation is given. The basic concepts and ideas
commonly considered for the algorithmic development in multiobjective optimisation
are given and some recent classes of methods which do not make use of derivatives are
reviewed. In particular, the focus is on direct search methods (DSM) of the directional
type and evolutionary multiobjective optimisation (EMO).

Keywords: multiobjective optimisation, derivative-free optimisation, Pareto domi-
nance, direct search methods, evolutionary algorithms, genetic algorithms, covariance
matrix adaptation.

Acronyms: The acronyms used through the paper are listed below in alphabetical
order:

BIMADS Biobjective Mesh Adaptive Direct Search
CMA-ES Covariance Matrix Adaptation Evolution Strategy

DFO Derivative-free Optimisation

DMS Direct Multisearch

DSM Direct Search Methods

EA Evolutionary Algorithms

EMO Evolutionary Multiobjective Optimisation
EP Evolutionary Programming

ES Evolution Strategies

GA Genetic Algorithms
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HypE Hypervolume Estimation Algorithm

KKT Karush-Kuhn-Tucker

MADS Mesh Adaptive Direct Search

MO-CMA-ES  Multiobjective Covariance Matrix Adaptation Evolution Strategy

MOO Multiobjective Optimisation

MULTIMADS Multiobjective Mesh Adaptive Direct Search

NSGA Nondominated Sorting Genetic Algorithm

NSGA-II Nondominated Sorting Genetic Algorithm, version 2

ROSEA Random Objective Selection Evolutionary Algorithm

SMS-EMOA  S-Metric Selection Evolutionary Multiobjective Optimisation
Algorithm

SPEA2 Strength Pareto Evolutionary Algorithm, version 2

VEGA Vector Evaluated Genetic Algorithm

1 Introduction

In practical applications, it is common to have multiple objective functions, which
need to be optimised simultaneously. Examples can be found in several distinct areas
such as engineering design, feature selection, financial and management tasks [54, 55,
59,73]. In the design phase of a new product, for example, the designer does not want
only to minimise the production cost, but additionally wishes to maximise both the
performance and the safety, minimise the conception time, and maximise the life time
of the product.

The concept of Pareto dominance is of extreme importance in multiobjective op-
timisation (MOQ), especially when some (or all) of the objectives are mutually con-
flicting. In this case, in general, there is not a single point that yields the “optimum
value” for all the functions involved in the problem definition. Instead, there is a set
of points, named as the Pareto optimal set, such that selecting one point of this set
instead of another will always sacrifice the quality of at least one of the objectives
(while improving, at least, another).

In MOO, the goal is to identify such a set of points, from which the designer will
pick a final solution for the problem. The Pareto optimal set presents the different
alternatives, none being better than the others. The choice will rely on the designer
perspective of the problem.

The current paper gives an overview of some recent developments in derivative-
free multiobjective optimisation. These methods are appropriated for optimising sev-
eral objectives, when computing the derivatives of some of the objective functions
involved is expensive, unreliable, or even impossible (which is a common situation in
real applications).

Two different classes of methods are considered, representing major distinct ap-
proaches that are currently being followed to tackle these problems: direct search
methods (DSM) of the directional type and evolutionary multiobjective optimisation
(EMO) algorithms. For each of these classes, the most relevant algorithms are intro-
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duced, pointing out strengths and weaknesses, and mentioning some of the improve-
ments that could be considered. The differences and similarities between the two
classes are pointed out.

The paper is divided as follows. Section 2 introduces the concepts and terminology
commonly considered for algorithmic development in MOO, and necessary for the
following sections. Section 3 starts by presenting a brief review of DSM for single
objective optimisation, moving then to MOO where details for two algorithms are
provided, also considering its convergence properties. Section 4 covers derivative-
free multiobjective optimisation methods with an heuristic and, or stochastic nature.
The section begins with an introduction to evolutionary algorithms (EA), first in single
objective optimisation, after which classical EMO algorithms are discussed. Recent
trends in algorithmic development for this area can be found at the end of the section.
The paper concludes with some final comments and directions for future research.

2 Concepts and terminology in multiobjective optimi-
sation

A multiobjective optimisation (MOO) problem can be mathematically formulated as
(see [56] for a more complete treatment):

min  F(z) = (fi(z), fo(x), ..., fm(x))"

s.t. €0

where () # Q C R™ represents the feasible region, and m (> 2) the number of ex-
tended real-value functions f; : Q@ C R" — RU {+o0},j = 1,...,m to minimise.
Recall that maximise f; is equivalent to minimise — f;. In the context of derivative-free
optimisation (DFO), derivatives are not available for use, at least for one of the com-
ponents of the objective function. These components could be, for instance, the result
of an expensive computer simulation, sometimes subject to numerical noise, which
prevents the use of numerical techniques in the approximation of the corresponding
derivatives.

The feasible region, €2, represents the set of points that verify the problem con-
straints. Constraints can be defined by mathematical expressions, for which deriva-
tives could be available for use, or, in the context of black-box optimisation, be re-
garded as an oracle, which simply evaluates if a point is feasible or not, without pro-
viding any quantitative measure of its feasibility.

In MOO, a point in R™ with components corresponding to the minimum of each
objective function is named as an ideal point. A single feasible point in R™ whose
image under F' corresponds to the ideal point does not always exist for a given MOO
problem and, even if it exists, computing it is generally a very hard task. When the
objective function presents several conflicting components, given a point correspond-
ing to values of the decision variables it could be impossible to find another one which
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simultaneously improves the value of all the corresponding objective function compo-
nents. The concept of Pareto dominance is crucial for comparing any two points lying
in the feasible region.

Definition 2.1 Let x,y € 2 be two points corresponding to values of the decision
variables of a MOO problem. The point x dominates vy, being represented by x < v,
if fi(z) < fi(y), forall j € {1,..., m}, and fi(x) < f;(y), for at least one index
je{l,...,m}.

Some authors state the previous definition by considering a strict partial order in
the cone R = {y € R™ : y > 0}. In this case, given two points z,y in §2, we have
the following equivalencies:

T <y <= F(z) <r F(y) <= F(y) - F(z) e RT \ {0}.

If, forz,y € Q, z £ yand y £ z then x and y are said to be nondominated (or
incomparable) points. A subset of 2 is said to be nondominated when any pair of
points in this subset is nondominated.

In single objective minimisation the goal is to find a feasible point, z,, such that
f(z,) < f(x), for all z € 2, meaning a global minimiser of the problem. Classifying
a point as a global minimiser is a difficult task, even when the corresponding point
is located in an early stage of the optimisation process. Thus the research is usually
focused on identifying local minimisers, i.e., points z, such that f(z.) < f(z), for all
r € QN N(x,), where N(z,) represents a neighbourhood of z,. The definition of
Pareto dominance is usually considered when adapting these concepts to MOO.

Definition 2.2 A point x, € S is said to be a global Pareto minimiser of F in Q) if
there is no y € ) such that y < x,. If there exists a neighbourhood N (z.) of x.
such that the previous property holds in Q N N (z.,), then z., is called a local Pareto
minimiser of F.

Rather than identifying a single point as a local Pareto minimiser, MOO algorithms
approximate the set of all feasible nondominated points, xp, referred to as the Pareto
optimal set. The image of xp under the function F' is commonly named as the Pareto
front (or the Pareto frontier) of the problem.

3 Direct search methods

Excluding the class of heuristics, derivative-free algorithms for single objective opti-
misation are typically divided in three major groups (see [21] for more details): direct
search methods (DSM), line-search algorithms for DFO, and trust-region interpola-
tion based methods. The last two classes are inspired by derivative-based optimisa-
tion. Line-search algorithms search for a better point along a particular direction, in
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this case computed without considering derivatives (see, for example, the recent book
by Kelley [46]). Trust-region algorithms consider local approximation models for the
objective function, which are minimised inside a trust region in order to find a better
point. In DFO, since derivatives are not available for use, Taylor models are replaced
by interpolation based models, computed from sets of points with good geometrical
properties (see, for instance, [20, 58]). In the current section focus will be on DSM
since, to the authors’ knowledge, it is the only class for which advances have been
made in extending it to MOO.

3.1 A short review of direct search methods

Direct search methods (DSM) characterise by not considering any explicit or implicit
models for the objective function, neither attempting to use or approximate its deriva-
tives. Minimisation is achieved through an iterative process of function evaluation
at finite sets of points, using the results to determine which new points should be
evaluated at the next iteration. Rather than a quantitative assessment of the objective
function value, it is sufficient to be able to compare any pair of points and decide
which point presents a better value for the objective function.

In single objective optimisation, the term direct search was first introduced in 1961,
by Hooke and Jeeves [41], but the first methods that fall into this class appeared be-
fore, in the fifties, with, for instance, the work of Fermi and Metropolis [33]. At this
early stage, the algorithmic development was mainly empirical, driven by practical
applications, and supported by geometrical considerations. Several algorithms were
proposed, with probably the most well-known example being the simplex algorithm
of Nelder and Mead [57]. For a survey on DSM see, for instance, Kolda ez al. [48].

It is only in the nineties, with the PhD thesis by Torczon and the subsequent
works [66, 67], that the first convergence theory was established for some algorithms
belonging to this class, raising the interest of the numerical optimisation community.
Since then, there has been an intensive and fruitful period of research, covering both
aspects of theoretical development and practical applications.

Audet and Dennis [1] generalised the work of Torczon [67], by proposing a general
framework for the class of DSM of the directional type, also designated as pattern
search methods. Basically, they proposed to split each iteration of these algorithms in
a search step and a poll step. The first is optional for ensuring the convergence, being
typically used to improve the numerical performance. The implementation, at this
step, of distinct strategies causes different algorithmic instances, all of them belonging
to the class of DSM (see, for example, Custddio et al. [23] or Vaz and Vicente [68].

The poll step consists of a local search around the current iterate, by testing scaled
poll directions associated with a positive basis or a positive spanning set. Positive
spanning sets are sets of vectors, whose nonnegative linear combinations generate a
given set. Positive bases are minimal positive spanning sets. Given any vector, a
positive spanning set for R™ is guaranteed to have at least one element within a 90°
angular distance of the considered vector. In the context of DFO, where the location
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of the gradient of the objective function is unknown, even when it exists, this property
is crucial to ensure the algorithmic convergence. For more details about the properties
of these sets of directions see Davis [24]. The scaling of the poll directions is achieved
by considering a step size parameter.

At a given iteration, once a better point is found, the iteration is declared as success-
ful. If the better point is found at the search step then the poll step could be omitted.
When both steps fail to generate a better point, the iteration is named as unsuccess-
ful. At unsuccessful iterations, additionally to the function evaluation performed at
the search step, all the poll directions have been tested. The step size is increased or
maintained at successful iterations and obligatorily reduced at unsuccessful ones.

Different algorithmic instances could also result from considering different glob-
alisation strategies, associated with the type of decrease required for the objective
function value, when deciding if a better point was found. If only simple decrease is
required, the update of the step size parameter and the computation of the poll direc-
tions follow strict rules in order to ensure that all the evaluated points lie in an implicit
mesh, mathematically defined as an integer lattice. Also, the points evaluated at the
search step need to be restricted to this implicit mesh, or be projected on it. Requiring
sufficient decrease relaxes these conditions.

A summarised algorithmic description of a basic DSM of the directional type is
given in Algorithm 3.1.

Algorithm 3.1 DSM of directional type for single objective optimisation

Initialisation
Choose xy € Qwith f(xy) < +00, an initial step size g > 0,0 < B < B2 < 1,
and v > 1. Let D be a (possibly infinite) set of positive spanning sets. Set k = 0.

Fork=0,1,2,...

1. Search step: Evaluate f at a finite set of points {z, : s € S}. If a better
point x, is found, set T 1 = xs, declare the iteration as successful and
skip the poll step.

2. Poll step: Choose a positive spanning set Dy, from the set D. Evaluate f at
the set of poll points Py, = {x\ + axd : d € Dy}, stopping the evaluating
process if a better point is found. In this case, set 1 = T) + oyd and
declare the iteration as successful. Otherwise, declare the iteration as
unsuccessful and set x4 = Ty.

3. Step size parameter update: [f the iteration was successful then maintain
or increase the step size parameter: a1 € [ay, yu]. Otherwise decrease
the step size parameter: .1 € [, Bactg.

The convergence analysis proposed by Torczon [67] for pattern search methods as-
sumed the continuity of the derivatives of the objective function, even if these deriva-
tives were not known or used in the algorithmic definition. This could be a very strong
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assumption, considering the features of the practical applications to solve. Audet and
Dennis [1] extended this convergence analysis by only requiring Lipschitz continuity
of the objective function. For that, they have recurred to Clarke’s calculus [18] and its
generalised directional derivatives, adapted by Jahn [45] to the constrained case. The
definition of Clarke-Jahn for a generalised directional derivative is here recalled, since
it will be mentioned in the following subsections.

For a function f Lipschitz continuous near a point z, and d belonging to the interior
of the tangent cone to ) at z, T, (), the Clarke-Jahn generalised directional derivative,
computed at z in the direction d, is defined as:

f(y+td)—f(y).

fo(xid) = lim sup :

y—x,y €N
t10,y+tdeQ

For directions belonging to the border of T (z) the Clarke-Jahn generalised direc-
tional derivatives result from taking limits as f°(z;d) = limyeint(7(2)).0—d [ (5 V)
(see Audet and Dennis [2]).

Audet and Dennis [2] have also proposed a new class of DSM of directional type,
namely mesh adaptive direct search (MADS), for which convergence is guaranteed
for general constrained problems. In this case, the algorithm makes use of a set of poll
directions which is asymptotically dense in the unit sphere. A step further was taken
by Vicente and Custédio [70], by extending the convergence analysis to particular
types of discontinuous functions (assuming that the objective function is directionally
Lipschitz with respect to a particular limit direction).

Nowadays, the general theory, supporting the convergence properties of DSM of
directional type, is reasonably well understood. The major challenge is to improve and
analyse the efficiency of algorithms, allowing to tackle higher dimensional problems,
and also moving to MOO. As mentioned before, carefully designed search steps could
be a tool for improving the numerical performance of the solvers, but, given the nature
of the poll step, parallel implementations should also be considered.

One of the first parallel implementations of a DSM of the directional type was asyn-
chronous parallel pattern search [42]. The use of asynchronous strategies could be
relevant when function evaluation presents considerably different times, for instance
due to distinct loads and, or speed of processors or distinct computational effort to
converge a numerical simulation. Following this work, several other serial implemen-
tations were parallelised (see, for instance, NOMAD [27] or PSwarm [69]), but this
topic is still the subject of intensive research.

DSM for MOO are in the beginning of their development. Zhong et al. [74] pro-
posed an empirical algorithm based on compass search, but for which no convergence
analysis was provided. To our knowledge, only two DSM were proposed for general
derivative-free multiobjective optimisation, namely multiobjective mesh adaptive di-
rect search (MULTIMADS) [4] and direct multisearch (DMS) [22], which will be the
subject of the following subsections.
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3.2 Multiobjective mesh adaptive direct search

In MOO, when the user is able to prioritise the different objectives defining the prob-
lem, an aggregation function could be considered, combining the several components
of the objective function into a single one. One possible approach to define this ag-

gregation function is to consider a weighted geometrical mean.
T

Let u = (max fi(z), max fo(x), ..., max f,,,(r)) be the Nadir point of the
TEXP rexp TEXP

problem and A;,7 € {1,...,m} be fixed weights. The idea is to maximise the
weighted geometrical mean of the differences between the components of the ob-
jective function and this reference point:

max II7%, (u; — fi(x)Y
s.t. fi(z) <u;,5€{1,2,...,m}
z€N

If all the components of the objective function are convex, the solution of the previ-
ous problem would generate a point in the Pareto front, but would also have required
the addition of m general constraints to the original problem (namely, f;(z) < u;,j €
{1,2,...,m}). It is noted that, typically, it is difficult to compute the Nadir point
of a MOO problem. Inspired by this approach, Audet et al. [3] developed BIMADS
(biobjective mesh adaptive direct search), a DSM suited for biobjective optimisation.

BIMADS computes an approximation to the Pareto front of a given biobjective
problem by solving a sequence of single objective DFO problems, preserving im-
portant features of the original objective function. Each of these subproblems is de-
fined through an aggregation function ¥,(z) = ¢,(fi1(z), f2(z), ..., fm(z)), where
¢, : R™ — R depends on a reference point r € R™.

The function V¥, should present the following characteristics: i) whenever all the
components of the objective function are Lipschitz continuous near a feasible point
x, ¥, should also be Lipschitz continuous near z; ii) if all the components of the ob-
jective function are Lipschitz continuous near z € ) with F'(z) < r componentwise,
and if d belongs to the tangent cone to the feasible region computed at x, when-
ever ff(x;d) < 0, forall j = 1,...,m then W2(x;d) < 0. These properties would
allow one to inherit the convergence results derived for the aggregation function to
F = (fi(z), fa(z), ..., fm(z)), the function defining the original MOO problem.

Audet et al. [3] proposed two different aggregation functions, which define dif-
ferent single objective formulations, for use in biobjective optimisation. One of these
aggregation functions resembles the weighted geometrical mean approach, without the
m additional constraints, which are implicitly included in the single objective func-
tion. These single objective formulations would be solved by a DFO solver, consider-
ing increasingly stringent stopping criteria. Audet et al. [3] selected MADS [2] as the
solver, but other approaches could be taken.

At the beginning of the iterative process, MADS is used to minimise each compo-
nent of the objective function, inside the feasible region. The points evaluated during
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the course of the optimisation are used to initialise a list of feasible nondominated
points. This list is updated at each iteration by adding new feasible points, removing
dominated ones, and sorting the feasible nondominated points in ascending order of
f1 and descending value for f5. It represents the current approximation to the Pareto
front of the problem.

At each iteration, the ordering strategy allows one to easily access the size of the
gaps between consecutive points lying in the approximation of the Pareto front and to
select a point corresponding to the largest ones. This point will be used to compute
a reference point in the objective function space, which will be used in the single ob-
jective formulation of the biobjective problem. Again, this formulation will be solved
with MADS. The underlying idea is to achieve a uniform coverage of the Pareto front,
even when it is represented by a nonconvex or a discontinuous function. If the cardi-
nality of the list of points equals one then each component of the objective function is
again minimised, with a stringent stopping criteria. At the end of each iteration, the
list of feasible nondominated points is updated with all the points evaluated during the
optimisation process. Algorithm 3.2 presents a simplified description of BIMADS.

Algorithm 3.2 Biobjective mesh adaptive direct search

Initialisation
Use MADS to solve mi{rll fi(z), j € {1,2} and use the evaluated points to ini-
e
tialise a list of feasible nondominated points, Ly. Order L by increasing order
of f1 and decreasing order of f,. Set k = 0.

For k=0,1,2,...

1. Selection of a reference point: If |L.| = 1, use MADS to again solve
mi§121 fi(x), 7 € {1,2}, with a stringent stopping criteria and skip the next
TE
step. Otherwise, compute a reference point based on the largest gaps in
Ly.

2. Single objective formulation minimisation: Use the reference point to
compute a single objective formulation, mig U,.(z), for the biobjective op-
TE

timisation problem. Use MADS to solve the single objective formulation.

3. Update of the list of feasible nondominated points: Use the feasible
evaluated points to update L. by adding nondominated points and remov-
ing dominated ones. Order Ly.1 = Ly by increasing order of f, and
decreasing order of fs.

Using generalised directional derivatives, Audet et al. [3] established an hierar-
chy of stationarity results for BIMADS, one of which is reproduced in the following
theorem.
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Theorem 3.1 (Theorem 4.3 in [3]) Let F be Lipschitz continuous near a limit point
x, € S, generated by MADS when applied to a single objective formulation mig v, (x)
TE

of the biobjective optimisation problem, at some reference point r € R?.  Assume
that int(To(x.)) # 0. Then, for any d € Tqo(x.) there exists j € {1,2} such that
[ (z.;d) > 0.

This stationarity result, which can be regarded as a generalisation of the Karush-
Kuhn-Tucker (KKT) conditions, states that there is no direction in the tangent cone
which is simultaneously descent for both components of the objective function. Thus,
it is a necessary condition for a point to be a Pareto (local or global) minimiser. If strict
differentiability is assumed for both components of the objective function (meaning
that the corresponding Clarke generalised gradient is a singleton), then the previous
theorem can be recast as a KKT-type stationarity result, using the gradient vectors.

The ordering strategy considered for the list of feasible nondominated points is
crucial when identifying the reference points to be used in the single objective for-
mulations. Nevertheless, it is not easily generalised to more than two objectives. To
allow the solution of MOO problems with more than two components in the objective
function, Audet et al. [4] had to consider a new set, the tangent hull, from which the
reference points would be selected.

Definition 3.1 Let z, be the minimum value of z = Z s;jfi(x), where s; are positive
j=1

scaling factors, for j € {1,2,...,m}, andlet B= {3 € R"™: Z;"Zl B; =1,8; = 0}.

The set {2.81,, : B € B}, where I,,, denotes the identity matrix of order m, is referred

to as the tangent hull.

At each iteration of MULTIMADS, the proposed solver for MOO, a convex com-
bination vector 3 € B is generated to select a reference point, 7, from the tangent
hull, which will be used to define a single objective formulation. The authors propose
a new single objective formulation which provides a more flexible optimality condi-
tion, by allowing the selection of a reference point anywhere in the objective function
space. Again, MADS will be used to solve this single objective DFO problem and
the evaluated points, generated during the course of the optimisation process, are used
to update the list of feasible nondominated points. Algorithm 3.3 summarises this
procedure.

Algorithm 3.3 Multiobjective mesh adaptive direct search

Initialisation
Use MADS to compute x;,, by solving 112(1)1 filx), j € {1,...,m} and let
F, = (fi(z1.),---, fm(Tm.)). Redefine f; = f; — F,, for j € {1,...,m}.
Use MADS to compute, z., by solving min,cq 37", s; f;(x), where s; are posi-
tive scaling factors, ensuring that the components of the objective function have
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similar magnitudes. Use the evaluated points to initialize a list of feasible non-
dominated points, L. Set k = 0.

For k=0,1,2,...

1. Selection of a reference point: Generate a reference point,
r = F, + 2,31, belonging to the tangent hull.

2. Single objective formulation minimisation: Use the reference point to
compute a single objective formulation, Hlislll V. (x), for the multiobjective
x€

optimisation problem. Use MADS to solve the single objective formula-
tion.

3. Update of the list of feasible nondominated points: Use the feasible
evaluated points to update L. by adding nondominated points and remov-
ing dominated ones.

Stationarity results, similar to the ones derived for the biojective optimisation prob-
lem, can be stated.

Theorem 3.2 (Theorem 3.4 in [4]) Let F' be Lipschitz continuous near a limit point
r, € Q, generated by MADS when applied to a single objective formulation
mingeq V. (z) of the multiobjective optimisation problem, at some reference point
r € R™ Assume that int(To(x,)) # 0. Then, for any d € Tq(z.) there exists
7€ {1,2;..., m} such that f3(x.;d) > 0.

In the original papers, where BIMADS and MULTIMADS were proposed, imple-
mentations were tested in some academic problems. The codes have also been used to
solve two real applications. BIMADS was used in the optimisation of a portfolio se-
lection problem in the presence of skewness (see [73]) and MULTIMADS was tested
in the optimisation of a styrene process (see [4]).

3.3 Direct multisearch for multiobjective optimisation

Custddio er al. [22] did not want to aggregate any components of the objective function
or define priorities for the several objectives involved. The goal was to generalise all
DSM of directional type to MOO. Thus, each iteration of direct multisearch (DMS)
is organised around a search step and a poll step. Like in the works of Audet et
al. [3,4], the algorithm keeps a list of feasible, nondominated points, which represents
the current approximation to the Pareto front and from which poll centers will be
chosen. At each iteration, the new feasible evaluated points are added to this list and
the dominated ones are removed. An iteration is said to be successful if the iterate list
changes, meaning that a new feasible nondominated point was found. Otherwise, the
iteration is declared as unsuccessful.
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Similarly to single objective optimisation, the search step is optional and is not
required for ensuring the convergence of the algorithm. It could be used, for instance,
to improve the numerical performance or to disseminate points across the Pareto front.
When no new feasible nondominated point is found at the search step, the poll step will
be executed. Convergence properties of the algorithm result from it. The algorithm
performs a local search around a selected poll center by testing directions belonging to
a positive basis, or a positive spanning set, scaled by a step size parameter. Again, new
feasible nondominated points are added to the current iterate list, with the dominated
ones being removed.

As in single objective optimisation, at the end of an unsuccessful iteration the cor-
responding step size parameters are decreased. For successful iterations the step sizes
are kept constant, or can even be increased.

Algorithm 3.4 corresponds to a short and concise description of DMS. Details about
the use of globalisation strategies, like considering implicit meshes or imposing a
sufficient decrease condition on the objective function value to accept a new point, are
omitted.

Algorithm 3.4 Direct multisearch for MOO

Initialisation
Choose an initial step size parameter oy > 0, 0 < 31 < B < 1, and v >
1. Let D be a (possibly infinite) set of positive spanning sets. Initialise the
list of feasible nondominated points and corresponding step size parameters
Ly = {(I,‘Z(!,j) 11 E ]} Set k = 0.

Fork=0,1,2,...

1. Selection of an iterate point: Select an iterate point (zy; ) € Ly as the
current poll center and step size parameter.

2. Search step: Evaluate F' at a finite set of points {xs : ©s € S}. Use
the feasible evaluated points to update L by adding nondominated points
and removing dominated ones. If L; changed, declare the iteration as
successful and skip the poll step.

3. Poll step: Choose a positive spanning set Dy from the set D. Evaluate
F at the set of poll points P, = {z\ + axd : d € Dy}. Use the feasible
evaluated points to update Ly by adding nondominated points and remov-
ing dominated ones. If L) changed, declare the iteration as successful.
Otherwise, declare the iteration as unsuccessful and set Ly = Lj.

4. Step size parameter update: If the iteration was successful then maintain
or increase the corresponding step size parameters. Otherwise decrease
the corresponding step size parameters.

This algorithmic framework is very general and encompasses several variants. Dif-
ferent algorithmic instances result from considering different strategies for the initial-
isation of the iterate list (line sampling, random sampling, Latin hypercube sampling,



