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Preface

With the discovery of quantization by Planck in 1900, quantum mechanics is
now more than a hundred years old. However, a proper understanding of the
phenomenon was gained only later in 1925 with the fundamental Heisenberg
commutation relation or phase space algebra and the associated uncertainty
principle. The resulting Schrédinger equation has ever since been the the-
oretical basis of atomic physics. The alternative formulation by Feynman
in terms of path integrals appeared two to three decades later. Although
the two approaches are basically equivalent, the Schrédinger equation has
found much wider usefulness, particularly in applications, presumably, in
view of its simpler mathematics. However, the realization that solutions of
classical equations, notably in field theory, play an important role in our
understanding of a large number of physical phenomena, intensified the in-
terest in Feynman’s formulation of quantum mechanics, so that today this
method must be considered of equal basic significance. Thus there are two
basic approaches to the solution of a quantum mechanical problem, and an
understanding of both and their usefulness in respective domains calls for
their application to exemplary problems and their comparison. This is our
aim here on an introductory level.

Throughout the development of theoretical physics two types of forces
played an exceptional role: That of the restoring force of simple harmonic
motion proportional to the displacement, and that in the Kepler problem
proportional to the inverse square of the distance, i.e. Newton’s gravita-
tional force like that of the Coulomb potential. In the early development
of quantum mechanics again oscillators appeared (though not really those
of harmonic type) in Planck’s quantization and the Coulomb potential in
the Bohr model of the hydrogen atom. Again after the full and proper for-
mulation of quantum mechanics with Heisenberg’s phase space algebra and
Born’s wave function interpretation the oscillator and the Coulomb poten-
tials provided the dominant and fully solvable models with a large number
of at least approximate applications. To this day these two cases of interac-
tion with nonresonant spectra feature as the standard and most important
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illustrative examples in any treatise on quantum mechanics and — excepting
various kinds of square well and rectangular barrier potentials — leave the
student sometimes puzzled about other potentials that he encounters soon
thereafter, like periodic potentials, screened Coulomb potentials and maybe
singular potentials, but also about complex energies that he encounters in a
parallel course on nuclear physics. Excluding spin, any problem more compli-
cated is frequently dispensed with by referring to cumbersome perturbation
methods.

Diverse and more detailed quantum mechanical investigations in the sec-
ond half of the last century revealed that perturbation theory frequently
does permit systematic procedures (as is evident e.g. in Feynman diagrams
in quantum electrodynamics), even though the expansions are mostly asymp-
totic. With various techniques and deeper studies, numerous problems could,
in fact, be treated to a considerable degree of satisfaction perturbatively.
With the growing importance of models in statistical mechanics and in field
theory, the path integral method of Feynman was soon recognized to offer
frequently a more general procedure of enforcing first quantization instead
of the Schrédinger equation. To what extent the two methods are actually
equivalent, has not always been understood well, one problem being that
there are few nontrivial models which permit a deeper insight into their
connection. However, the aforementioned exactly solvable cases, that is the
Coulomb potential and the harmonic oscillator, again point the way: For
scattering problems the path integral seems particularly convenient, whereas
for the calculation of discrete eigenvalues the Schrédinger equation. Thus
important level splitting formulas for periodic and anharmonic oscillator po-
tentials (i.e. with degenerate vacua) were first and more easily derived from
the Schrodinger equation. These basic cases will be dealt with in detail by
both methods in this text, and it will be seen in the final chapter that poten-
tials with degenerate vacua are not exclusively of general interest, but arise
also in recently studied models of large spins.

The introduction to quantum mechanics we attempt here could be sub-
divided into essentially four consecutive parts. In the first part, Chapters
1 to 14, we recapitulate the origin of quantum mechanics, its mathematical
foundations, basic postulates and standard applications. Our approach to
quantum mechanics is through a passage from the Poisson algebra of classi-
cal Hamiltonian mechanics to the canonical commutator algebra of quantum
mechanics which permits the introduction of Heisenberg and Schrodinger
pictures already on the classical level with the help of canonical transforma-
tions. Then the Schrodinger equation is introduced and the two main exactly
solvable cases of harmonic oscillator and Coulomb potentials are treated in
detail since these form the basis of much of what follows. Thus this first part
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deals mainly with standard quantum mechanics although we do not dwell
here on a large number of other aspects which are treated in detail in the
long-established and wellknown textbooks.

In the second part, Chapters 15 to 20, we deal mostly with applica-
tions depending on perturbation theory. In the majority of the cases that we
treat we do not use the standard Rayleigh—Schrédinger perturbation method
but the systematic perturbation procedure of Dingle and Miiller which is in-
troduced in Chapter 8. After a treatment of power potentials, the chapter
thereafter deals with Yukawa potentials, and their eigenvalues. This is fol-
lowed by the important case of the cosine or Mathieu potential for which
the perturbation method was originally developed, and the behaviour of the
eigenvalues is discussed in both weak and strong coupling domains with for-
mation of bands and their asymptotic limits. The solution of this case —
however in nonperiodic form — turns out to be a prerequisite for the com-
plete solution of the Schrédinger equation for the singular potential 1/r% in
Chapter 19, which is presumably the only such singular case permitting com-
plete solution and was achieved only recently. The earlier Chapter 17 also
contains a brief description of a similar treatment of the elliptic or Lamé po-
tential. The following Chapter then deals with Schrodinger potentials which
represent essentially anharmonic oscillators. The most prominent examples
here are the double well potential and its inverted form. Using perturbation
theory, i.e. the method of matched asymptotic expansions with boundary
conditions (the latter providing the so-called nonperturbative effects), we
derive respectively the level-splitting formula and the imaginary energy part
for these cases for arbitrary states. In the final chapter of this part we dis-
cuss the large order behaviour of the perturbation expansion with particular
reference to the cosine and double well potentials.

In part three the path integral method is introduced and its use is illus-
trated by application to the Coulomb potential and to the derivation of the
Rutherford scattering formula. Thereafter the concepts of instantons, peri-
odic instantons, bounces and sphalerons are introduced and their relevance
in quantum mechanical problems is discussed (admittedly in also trespassing
the sharp dividing line between quantum mechanics and simple scalar field
theory). The following chapters deal with the derivation of level splitting
formulas (including excited states) for periodic potentials and anharmonic
oscillators and — in the one-loop approximation considered — are shown to
agree with those obtained by perturbation theory with associated boundary
conditions. We also consider inverted double wells and calculate with the
path integral the imaginary part of the energy (or decay width). The poten-
tials with degenerate minima will be seen to re-appear throughout the text,
and the elliptic or Lamé potential — here introduced earlier as a generaliza-



xviil

tion of the Mathieu potential — re-appears as the potential in the equations
of small fluctuations about the classical configurations in each of the basic
cases (cosine, quartic, cubic). All results are compared with those obtained
by perturbation theory, and whenever available also with the results of WKB
calculations, this comparison on a transparent level being one of the main
aims of this text.

The introduction of collective coordinates of classical configurations and
the fluctuations about these leads to constraints. Our fourth and final
part therefore deals with elementary aspects of the quantization of systems
with constraints as introduced by Dirac. We then illustrate the relevance of
this in the method of collective coordinates. In addition this part considers
in more detail the region near the top of a potential barrier around the
configuration there which is known as a sphaleron. The physical behaviour
there (in the transition region between quantum and thermal physics) is
no longer controlled by the Schrodinger equation. Employing anharmonic
oscillator and periodic potentials and re-obtaining these in the context of a
simple spin model, we consider the topic of transitions between the quantum
and thermal regimes at the top of the barrier and show that these may
be classified in analogy to phase transitions in statistical mechanics. These
considerations demonstrate (also with reference to the topic of spin-tunneling
and large-spin behaviour) the basic nature also of the classical configurations
in a vast area of applications.

Comparing the Schrodinger equation method with that of the path inte-
gral as applied to identical or similar problems, we can make the following
observations. With a fully systematic perturbation method and with ap-
plied boundary conditions, the Schrodinger equation can be solved for prac-
tically any potential in complete analogy to wellknown differential equations
of mathematical physics, except that these are no longer of hypergeometric
type. The particular solutions and eigenvalues of interest in physics are — as
a rule — those which are asymptotic expansions. This puts Schrodinger equa-
tions with e.g. anharmonic oscillator potentials on a comparable level with,
for instance, the Mathieu equation. The application of path integrals to the
same problems with the same aims is seen to involve a number of subtle steps,
such as limiting procedures. This method is therefore more complicated. In
fact, in compiling this text it was not possible to transcribe anything from
the highly condensed (and frequently unsystematic) original literature on
applications of path integrals (as the reader can see, for instance, from our
precise reference to unavoidable elliptic integrals taken from Tables). An
expected observation is that — ignoring a minor deficiency — the WKB ap-
proximation is and remains the most immediate way to obtain the dominant
contribution of an eigenenergy, it is, however, an approximation whose higher
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order contributions are difficult to obtain. Nonetheless, we also consider at
various points of the text comparisons with WKB approximations, also for
the verification of results.

In writing this text the author considered it of interest to demonstrate
the parallel application of both the Schrodinger equation and the path in-
tegral to a selection of basic problems; an additional motivation was that a
sufficient understanding of the more complicated of these problems had been
achieved only in recent years. Since this comparison was the guide-line in
writing the text, other topics have been left out which are usually found in
books on quantum mechanics (and can be looked up there), not the least for
permitting a more detailed and hopefully comprehensible presentation here.
Throughout the text some calculations which require special attention, as
well as applications and illustrations, are relegated to separate subsections
which — lacking a better name — we refer to as Examples.

The line of thinking underlying this text grew out of the author’s asso-
ciation with Professor R. B. Dingle (then University of Western Australia,
thereafter University of St. Andrews), whose research into asymptotic ex-
pansions laid the ground for detailed explorations into perturbation theory
and large order behaviour. The author is deeply indebted to his one-time
supervisor Professor R. B. Dingle for paving him the way into this field
which — though not always at the forefront of current research (including
the author’s) — repeatedly triggered recurring interest to return to it. Thus
when instantons became a familiar topic it was natural to venture into this
with the intent to compare the results with those of perturbation theory.
This endeavour developed into an unforeseen task leading to periodic instan-
tons and the exploration of quantum-classical transitions. The author has
to thank several of his colleagues for their highly devoted collaboration in
this latter part of the work over many years, in particular Professors J.—Q.
Liang (Taiyuan), D. K. Park (Masan), D. H. Tchrakian (Dublin) and Jian—
zu Zhang (Shanghai). Their deep involvement in the attempt described here
is evident from the cited bibliography.*

H. J. W. Miiller—Kirsten

*In the running text references are cited like e.g. Whittaker and Watson [283]. For ease of
reading, the references referred to are never cited by mere numbers which have to be identified e.g.
at the end of a chapter (after troublesome turning of pages). Instead a glance at a nearby footnote
provides the reader immediately the names of authors, e.g. like E. T. Whittaker and G. N. Watson
[283], with the source given in the bibliography at the end. As a rule, formulas taken from Tables
or elsewhere are referred to by number and/or page number in the source, which is particularly
important in the case of elliptic integrals which require a relative ordering of integration limits and
parameter domains, so that the reader is spared difficult and considerably time-consuming searches
in a source (and besides, shows him that each such formula here has been properly looked up).
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