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Preface

As Dr. Ayres indicates in his preface to the First Edition, this book will help
students become proficient in the mathematics commonly presented in the first year
(or two) of college. In updating this text, I have left that point-of-view intact;
however, I have deleted material that is no longer presented (for example, logarithmic
solutions of the right triangle). Additionally, I have added material which has been
placed in the curriculum since the publication of the first edition and I have
“modernized” many of the problems and exercises. The notation has been changed
when necessary and discrete mathematics has been reemphasized.

My thanks must be expressed to Professor Ayres: He has provided me (and so
many students) with the very finest of review materials. My thanks, as always, go
to John Aliano, Executive Editor of the Schaum Division at McGraw-Hill and to
Maureen Walker for her handling of the manuscript and proofs. Cathy Decker-
Coffey typed all revisions with her usual meticulous care. Finally, my family has
provided me with “quiet time”” at home and without that contribution, this revision
would have been impossible.

PHILIP A. SCHMIDT

New Paltz, NY
January 1992
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Preface to the First Edition

This book is designed primarily to assist students in acquiring a more thorough
knowledge and proficiency in basic college mathematics. It includes a thorough
coverage of algebra, plane trigonometry, and plane analytic geometry together with
selected topics in solid analytic geometry and a brief introduction to the calculus,
in that order. In addition to the use of the book by students taking a formal course
in first year college mathematics, it should also be of considerable value to those
who wish to review the fundamental principles and applications in anticipation of
further work in mathematics.

Each chapter begins with a clear statement of the pertinent definitions, principles,
and theorems, together with illustrative and descriptive material. This is followed
by carefully graded sets of solved and supplementary problems. The solved problems
have been selected and solutions arranged so that a study of each will be rewarding.
They serve to illustrate and amplify the theory, provide the repetition of basic
principles so vital to effective teaching, and bring into sharp focus those fine points
without which the student continually feels on unsafe ground. Derivations of
formulas and proofs of theorems are included among the solved problems. The
supplementary problems offer a complete review of the material of each chapter.

Although in many texts some degree of unification of the material has been
achieved, it seemed best to- make no attempt in that direction here. However, the
reader will find that the material has been so divided into chapters and the problems
in these chapters so arranged as to make the book a useful supplement to all current
standard texts.

Considerably more material has been included here than can be covered in
most first courses. This has been done to make the book more flexible, to provide
a more useful book of reference, and to stimulate further interest in the topics.

The author gratefully acknowledges his indebtedness to Mr. Henry Hayden for
painstaking work in the preparation of all drawings and for typographical
arrangement.

FrRANK AYRES, JR.
Carlisle, Pa.
June 1958
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Chapter 1

The Number System of Algebra

ELEMENTARY MATHEMATICS is concerned mainly with certain elements called numbers and with
certain operations defined on them. ,

The unending set of symbols 1,2, 3,4,5,6,7,8,9,10,11, 12, ... used in counting are called natural
numbers.

In adding two of these numbers, say 5 and 7, we begin with 5 (or with 7) and count to the right
seven (or five) numbers to get 12. The sum of two natural numbers is a natural number, that is, the
sum of two members of the above set is a member of the set.

In subtracting 5 from 7, we begin with 7 and count to the left five numbers to 2. It is clear, however,
that 7 cannot be subtracted from 5 since there are only four numbers to the left of 5.

INTEGERS. Inorder that subtraction be always possible, it is necessary to increase our set of numbers.
We prefix each natural number with a + sign (in practice, it is more convenient not to write the sign)
to form the positive integers, we prefix each natural number with a — sign (the sign must always be
written) to form the negative integers, and we create a new symbol 0, read zero. On the set of integers

e..,—8,-7,—6,-5,—-4,-3,-2,-1,0,+1,+2,+3,+4,+5, +6, +7, +8, . ..

the operations of addition and subtraction are possible without exception.

To add two integers as +7 and —5, we begin with +7 and count to the left (indicated by the sign
of —5) five numbers to +2 or we begin with —5 and count to the right (indicated by the sign of +7)
seven numbers to +2. How would you add —7 and —57?

To subtract +7 from —5 we begin with —5 and count to the left (opposite to the direction indicated
by +7) seven numbers to —12. To subtract —5 from +7 we begin with +7 and count to the right (opposite
to the direction indicated by —5) five numbers to +12. How would you subtract +7 from +5? —7 from
-5?7 =5 from —7?

If one is to operate easily with integers it is necessary to avoid the process of counting. To do this
we memorize an addition table and establish certain rules of procedure. We note that each of the
numbers +7 and —7 is seven steps from 0 and indicate this fact by saying that the numerical value of
each of the numbers +7 and —7 is 7. We may state:

Rule 1. To add two numbers having like signs, add their numerical values and prefix their common sign.

Rule 2. To add two numbers having unlike signs, subtract the smaller numerical value from the larger,
and prefix the sign of the number having the larger numerical value.

Rule 3. To subtract a number, change its sign and add. Since 3-2=2+2+2 =3+ 3 = 6, we assume
(+3)(+2) = +6 (=3)(+2) = (+3)(-2) = -6 and (=3)(=2)=+6

Rule 4. To multiply or divide two numbers (never divide by 0!), multiply or divide the numerical
values, prefixing a + sign if the two numbers have like signs and a — sign if the two numbers
have unlike signs. (See Problem 1.1.)

If m and n are integers then m + n, m — n, and m - n are integers but m + n may not be an integer.
(Common fractions will be treated in the next section.) Moreover, there exists a unique integer x such
that m + x = n. If x =0, then m = n; if x is positive (x > 0), then m is less than n (m < n); if x is
negative (x < 0), then m is greater than n (m > n). '

The integers may be made to correspond one-to-one with equally spaced points on a straight line
as in Fig. 1-1. Then m > n indicates that the point on the scale corresponding to m lies to the right of

3



4 THE NUMBER SYSTEM OF ALGEBRA [CHAP. 1

the point corresponding to n. There will be no possibility of confusion if we write the point m rather
than the point which corresponds to m and we shall do so hereafter. Then m < n indicates that the
point m lies to the left of n. (See Problems 1.2-1.4.)

L ) [l l I . S [l e 1 [
T LI 1 L T 1 ) T 1 1 ¥ >
—4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

Fig. 1-1

Every positive integer m is divisible by =1 and +m. A positive integer m > 1 is called a prime if
its only factors or divisors are +1 and +m; otherwise, m is called composite. For example, 2,7, 19, are
primes while 6 =2-3,18 =2-3-3,and 30 = 2 - 3 - 5 are composites. In these examples, the composite
numbers have been expressed as products of prime factors, that is, factors which are prime numbers.
Clearly, if m = r- s+t is such a factorization of m, then —m = (—1)r- s- t is a factorization of —m.
(See Problems 1.5-1.6.)

THE RATIONAL NUMBERS. The set of rational numbers consists of all numbers of the form m/n,
where m and n # 0 are integers. Thus, the rational numbers include the integers and common fractions.

Every rational number has an infinitude of representations; for example, the integer 1 may be
represented by 1,3,3,%, ... and the fraction  may be represented by ¢, 5,5, ... A fraction is said to
be expressed in lowest terms by the representation m/n when m and n have no common prime factor.

The most useful rule concerning rational numbers is,.therefore,

Rule 5. The value of a rational number is unchanged if both the numerator and denominator are
multiplied or divided by the same nonzero number.

Caution. We use Rule 5 with division to reduce a fraction to lowest terms. For example, we write

15 3-5 5 . . :

i 3.7 =3 and speak of canceling the 3’s. Now canceling is not an operation on numbers. We cancel
or strike out the 3’s as a safety measure, that is, to be sure that they will not be used in computing the
final result. The operation is division and Rule 5 states that we may divide the numerator by 3 provided
we also divide the denominator by 3. This point is belabored here because of the all too common error
124 - 5 . 12a -5 . . . ..

4z The fact is that a cannot be further simplified for if we divide 7a by a we must also

12-5/a
divide 12a and 5 by a. This would lead to the more cumbersome —7—/— (See Problems 1.7-1.8.)
The rational numbers may be associated in a one-to-one manner with points on a straight line as
in Fig. 1-2. Here the point associated with the rational number m is m units from that point (called
the origin) associated with 0, the distance between the points 0 and 1 being the unit of measure.

< -
~N 2 ™~
e D = = S
1 1 L I} L 1 ) - L L Il 1 1 L 1 1 L .
T 1 E j ] T T ] L ] L) ] »
-5 -y -3 -2 -1 0 1 2 3 4 5
Fig. 1-2

If two rational numbers have representations r/n and s/n, where n is a positive integer, then
r/n>s/nifr>s,r/n=s/nif r=s,and r/n < s/nif r < s. Thus, in comparing two rational numbers
it is necessary to express them with the same denominator. Of the many denominators (positive integers)



CHAP. 1] THE NUMBER SYSTEM OF ALGEBRA ‘5

there is always a least one, called the least common denominator. For the fractions ? and 3, the least
common denominator is 15. We conclude that 2 <3 since 2 = % <12 = . (See Problems 1.9-1.10.)

Rule 6. The sum (difference) of two rational numbers expressed with the same denominator is a rational
number whose denominator is the common denominator and whose numerator is the sum
(difference) of the numerators.

Rule 7. The product of two or more rational numbers is a rational number whose numerator is the
product of the numerators and whose denominator is the product of the denominators of the
several factors.

Rule 8. The quotient of two rational numbers can be evaluated by the use of Rule 5 with the least
common denominator of the two numbers as the multiplier.

(See Problems 1.11-1.13.)

If a and b are rational numbers, a + b, a — b, and a - b are rational numbers. Moreover, if a and
b are # 0, there exists a rational number x, unique except for its representation, such that

ax=1>b (1.1)
When a or b or both are zero, we have the following situations:

b=0and a # 0: (1.1) becomes a- x =0 and x = 0, that is, 0/a = 0 when a # 0.

a=0and b # 0: (1.1) becomes 0 - x = b; then b/0, when b # 0, is without meaning since 0 - x = 0.

a=0and b =0: (1.1) becomes 0 - x = 0; then 0/0 is indeterminate since every number x satisfies
the equation.

In brief: 0/a = 0 when a # 0, but division by 0 is never permitted.

DECIMALS. In writing numbers we use a positional system, that is, the value given any particular
digit depends upon its position in the sequence. For example, in 423 the positional value of the digit
4 is 4(100) while in 234 the positional value of the digit 4 is 4(1). Since the positional value of a digit
involves the number 10, this system of notation is called the decimal system. In this system the number
4238.75 means

4(1000) + 2(100) + 3(10) + 8(1) + 7(:%) + 5(:%)

It is interesting to note that from this example certain definitions to be made in a later study of exponents
may be anticipated. Since 1000 = 10°, 100 = 107, 10 = 10' it would seem natural to define 1 = 10°,
E5=10"", 5 =10"2%

By the process of division, any rational number can be expressed as a decimal; for example,
19=12.121212.... This is termed a repeating decimal since the digits 12, called the cycle, are repeated
without end. It will be seen later that every repeating decimal represents a rational number.

In operating with decimals, it is necessary to “round off”” a decimal representation to a prescribed
number of decimal places. For example, 3 = 0.3333... is written as 0.33 to two decimal places and
2=0.6666 ... is written as 0.667 to three decimal places. In rounding off, use will be made of the
Computer’s Rule:

(a) Increase the last digit retained by 1 if the digits rejected exceed the sequence 50000. .. ; for
example, 2.384629 ... becomes 2.385 to three decimal places.

(b) Leave the last digit retained unchanged if the digits rejected are less than 5000...; for
example, 2.384629 ... becomes 2.38 to two decimal places.

(c) Make the last digit retained even if the digit rejected is exactly S; for example, to three decimal
places 11.3865 becomes 11.386 and 9.3815 becomes 9.382.

(See Problem 1.14.)
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PERCENTAGE. The symbol %, read percent, means per hundred; thus 5% is equivalent to 755 or 0.05.

Any number, when expressed in decimal notation, can be written as a percent by multiplying by
100 and adding the symbol %. For example, 0.0125 = 100(0.0125)% = 1.25% = 1;%, 2.3 = 230%, and
35 =0.35 = 35%.

Conversely, any percentage may be expressed in decimal form by dropping the symbol % and
dividing by 100. For example, 42.5% = 42.5/100 = 0.425, 3.25% = 0.0325, and 2000% = 20.

When reckoning percentages, express the percent as a decimal and, when possible, as a simple
fraction. For example, 4% of 48 = 0.0425 x 48 = 2.04 and 123% of 5.28 = § of 5.28 = 0.66. (See Problems
1.15-1.18.)

THE IRRATIONAL NUMBERS. The existence of numbers other than the rational numbers may be
inferred from either of the following considerations:

(a) We may conceive of a nonrepeating decimal constructed in endless time by setting down a
succession of digits chosen at random.

(b) The length of the diagonal of a square of side 1 is not a rational number, that is, there exists
no rational number a such that a> = 2. Numbers such as v2, v'2, ¥/ =3, and o (but not v—3
or ¥/ =5) are called irrational numbers. The first three of these are called radicals. The radical
{/a is said to be of order n; n is called the index and a is called the radicand.

(See Problems 1.19-1.21.)

THE REAL NUMBERS. The set of real numbers consists of the rational and irrational numbers. The
real numbers may be ordered by comparing their decimal representations. For example, v2 = 1.4142 . . . ;
then 1 =14<+2,3=1.5> 2, etc.

We assume that the totality of real numbers may be placed in one-to-one correspondence with the
totality of points on a straight line. See Fig. 1-3.

T o
: e K S
1 1 1 )] A | 1 N | L Ll L L -
T 1 1 L) L) T L ) Ll L) [
=5 -4 -3 -2 -1 0 1 2 3 4 5
Fig. 1-3

The number associated with a point on the line, called the coordinate of the point, gives its distance
and direction from that point (called the origin) associated with the number 0. If a point A has
coordinate a, we shall speak of it as the point A (a).

The directed distance from point A (a) to point B (b) on the real number scale is given by
AB = b — a. The midpoint of the segment AB has coordinate 3(a + b). (See Problems 1.22-1.25.)

THE COMPLEX NUMBERS. In the set of real numbers there is no number whose square is —1. If
there is to be such a number, say v—1 then by definition (vV—1)> = —1. Note carefully that (v—1)> =
v=1v=1 =+(=1)(-1) = V1 = lisincorrect. In order to avoid this error, the symbol i with the following
properties is used:

Ifa>0, . v—a=iva, i?=—1
Then : (V=2 =vV=2v=2=(iV2)(iV2) = i*- 2 = =2
and V=2v=3 = (iv2)(iv3) = i"6 = V6
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Numbers of the form a + bi, where a and b are real numbers, are called complex numbers. In the
complex number a + bi, a is called the real part and bi is called the imaginary part. Numbers of the
form ci, where c is real, are called imaginary numbers.

The complex number a + bi is a real number when b = 0 and a pure imaginary number when
a = 0. When a complex number is not a real number it is called imaginary.

Complex numbers will be considered in more detail in a later chapter. Only the following operations
will be considered here:

To add (subtract) two complex numbers, add (subtract) the real parts and add (subtract) the pure
imaginary parts.

To multiply two complex numbers, form the product treating i as an ordinary number and then
replace i’ by —1.

(See Problems 1.26-1.27.)

Solved Problems

1.1 Give the results when the following operations are performed on each of the numbers —9,—6,
-3,0,3,6,9,12,15: (a) add —4, (b) subtract 6, (c) subtract —2, (d) multiply by —5, (e) divide by 3, (f)
divide by —1, (g) divide by —3.

(a) -—13,-10, -7, -4, -1,2,5,8, 11 (e) -3,-2,-1,0,1,2,3,4,5
(b) -15,-12,-9, -6, -3,0,3,6,9 (f) 9,6,3,0, -3, -6, -9, —12, —15
(¢) —-7,-4,-1,2,5,8,11,14,17 (g) 3,2,1,0, -1, -2, -3, -4, -5

(d) 45,30, 15,0, —15, =30, —45, —60, =75

1.2 Arrange the integers in each set so that they may be separated by < and again so that they may be separated

by >.
(a) 3,15,12,20,0 Ans. 0<3<12<15<20;20>15>12>3>0
(b) 3, —3,5,0, =2 Ans. —-3< -2<0<3<5;5>3>0> -2> -3

(¢) -7, -5, —10, —8 Ans. —-10< —8< —-7< -5, =5> —-7> —-8> —10

1.3 Let x be an integer. By means of Fig. 1-1, interpret each of the following:

(a) x<10 Ans. x is to the left of 10.

(b) x>-2 Ans. x is to the right of —2.

(c) x=5 Ans. x is 5 or is to the right of 5.

(d) 2<x<6 Ans. x is to the right of 2 but to the left of 6.

(e) 10>x>-3 Ans. xis to the left of 10 but to the right of —3.

1.4 List all integral values of x when
(a) 2<x<6 Ans. 3,4,5 (d) 2=x<5 Ans. 2,3,4
(b) 2>x>-3 Ans. -2,-1,0,1 () —4<x=-1 Ans. -3,-2,-1
(¢) -5<x<0 Ans. —4, -3, =2, —1 (f) 2=z=x=-3 Ans. -3,-2,-1,0,1,2

1.5 List the first 15 primes.
2,3,5,7,11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
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1.7

1.9
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Express each of the following integers as a product of primes: (a) 6930, (b) 23,595.

(a) A systematic procedure is to test the primes 2, 3, S, ... in order. When a factor is found, we then
repeat the procedure, using in order all primes not already rejected, on the quotient. Thus, 6930 =
2.3465. Since 3465 is not divisible by 2, we try 3 and obtain 6930 = 2 - 3 - 1155. Using 3 again, we
find 6930 = 2 - 3 - 3 - 385. Since 385 is not divisible by 3, we try S and obtain 6930 =2-3:3-5-77 =
2-3-3-5-7-11.

(b) 23,595=3-5-11-11-13.

Express 2 as a fraction having denominator (a) 12, (b) 36, (c) 84, (d) 126.

5.5-2_10 b 5 5-6 30 5514 70 5521 105
6 6-2 12 6 6:6 36 6 6-14 84 6 6-21 126

(@) 6 __2:3 1 _1 © 27 3-3-3 3
24 2.2:2:3 2-2 4 45 3-35 5
30 2-3-5 5 60 2:2:3-5 5 5
(b)) —=—"T—== (d) —= = ==
2 2-3-7 7 9% 2:2:2:2:-2-3 2-2-2 8

In each of the following ﬁnd the lowest common denominator (LCD) of the several fractions: (a) 2,2,

‘ (b) & 6,9,24, () 1 125 so, 25, (d) 72 75;?

To find the LCD: Express each of the several denominators as the product of prime factors, write each
distinct factor the greatest number of times it occurs in any denominator, and form the product.

(a) Here4=2-2and 6=2-3; LCD = (2-2)(3) = 12.

(b) Here6=2:3,9=3-3,24=2-2-2-3;LCD=(2-2-2)(3-3)=72.

(¢c) Here12=2:2-3,60=2-2-3-5,25=5-5,LCD=(2-2)(3)(5-5)=

(d) Here72=2-2:2-3:3,75=3-5-5,80=2-2-2-2-5LCD=2-2-2-2-3-3-5-5=3600.

Arrange each set of rational numbers so that they may be separated by <: (a) 1, —3,3,3,—3; (b)
2 7 _5 _11 _5

_39_— —3’—_, 12+
(a) Since1 -}, 4=—5,i=15,3=3, 3=, then S<-i<3i<i<lL
(b) Since 3= -3, §=-%, 5=-%, ¢ =%, =M, then g << F<F<5.
Perform the indicated operations
1 2 5 4 5+4 9 15( 21 15-21-4 3:5-3:-7-2-2
(a) -t =t —=—=— (g) — = — = — = -2
2 5 10 10 10 10 7 10/\9 7-10-9 7-2-5-3-3
2 1 4-3 1 5 11 5 10
b) - —z=—=- h) —+—=1 4——14——-10—11——
() 3 2 6 6 (h) 7 14 7 11
() 11 4 1 11+16-2 25 (i) 16 7 1016. 7 32
C = SRS R 1 —_——_—= w— _—=
12 3 6 12 12 5 10 5 10 7
15 17 1 15-34+8 11 2 2 24
d —_————t_t_e— = —— i = —=} =3.-8 = —_ ) =—-——=-12
M) % 27s 64 64 G 8 ( 3) 38 3( 3) 2
2 4 2.4 8 4-3 4-4-43) 16-3 13
() TxXo=T—7=7 (k) 2 I ==2
3.5 3- 15 2+3 4-2+4(3) 8+2 10
5 16 5-16 2 1-7 83)-83G) 4-14 -10
(f) *x—=——== n 2 ‘;= 2 ‘;—_- . 1
8 15 8-15 3 1-5 8-1-8(3 8-3 5
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1.13

1.14

1.15

1.16

1.18

The product of five factors each equal to 2, thatis, 2-2-2 -2 - 2, is denoted by 2° and read the fifth power
of 2. We call 2 the base and 5 the exponent. Show that the solutions of Solved Problem 8(a), (c), (d) may
be written as follows using exponents:

6 23 1 1 27 3 3 60 22-3-5 5 5

— R eme— = S - —_———_———= - d —_—— == -
@ %=33 773 © 5=3s™s W =73 =3
Verify

a> a-a-a-a-a
4. 42 = -a-a- . = a%*2 = g° ) —=—— — T _ G533 g2

(a) a*-a (a-a-a-a)(a-a)=a a®, (b) e - a a’,
(©) a_3_ araa 1 1
@ P ararararn @0 &

(d) (a-b)*=(a-b)(a-b)(a-b)a-b)=(a-a-a-a)(b-b-b-b)=a*h?

m+n

The general rules are: If m and n are positive ihtegers, then a™a" = a™""; a"/a" = a"™".if m > n;
a"/a"=1if m=n;a"/a" =1/a""" if m<n; (a-b)" =a™b™

Express 2 as a decimal to (a) five, (b) four, (c) three, (d) two decimal places.

By division, Z = 0.285714 .. .. Then we have for a) 0.28571, b) 0.2857, ¢) 0.286, d) 0.29.

Compute:
(a) 6% of 400 = 0.06 x 400 = 24 (¢) 135% of 500 = 1.35 x 500 = 675
(b) 43% of 1200 = 0.045 x 1200 = 54 (d) 2% of 6% of 8000 = 0.02 x 0.06 x 8000 = 9.6

What percent (a) of 75 is 15? (b) of 112 is 14? (¢) of 72 is 3.96? (d) of 0.44 is 1.034?
(a) 3—5 5 =20% (¢) 3.96/72 = 0.055 = 5%
(b) T5=3=121% (d) 1.034/0.44 = 2.35 = 235%

Find the number, given (a) 5% of it is 32, (b) 8% of it is 8.4, (¢) 210% of it is 54.6, (d) 0.5% of it is 2.3.

(a) 1% of the number is ¥ = 6.4; 100% of the number is 100 x 6.4 = 640 or 32/0.05 = 640.
(b) 8.4/0.08 =105 (c) 54.6/2.1 =26 (d) 2.3/0.005 = 460

Express the percentage strength of each of the following solutions (by a 10% silver nitrate solution is meant
10 grams of silver nitrate in 100 grams of solutio_n): (a) 200 grams of solution containing a 0.5-gram tablet
of bichloride of mercury; (b) 50 grams of solution containing 0.8 gram of salt.

(a) 0.5/200 = 0.0025 = 0.25% = ;% (b) 0.8/50=0.016 = 1.6%

Simplify each of the following radicals:

(a) V700 = 1007 = 107 0 123 _2.

354 — 3R 3 =93 £ Y& _ _
(c) VI2=v36-2=6V2 (2) \[§=,/ﬁ= 10_319
8- Vg2  Vie 4

(d) V—64=-32-2=-292
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1.20

1.21

1.22

1.23

1.24

1.25

THE NUMBER SYSTEM OF ALGEBRA [CHAP. 1

Perform the indicated operations.

(@) &2+3V2I-2V2=(4+3-22= =5V2 () ¥64-5Y1=2v2-3V2=-42
(b) 6V/3—-V2T=6V3-3/3=3V3 (f) V3-V15=+v45=3J5

(¢) 2¥5-V135+4825=235-3V5+4¥5=3V5 (g) V18-¥a=¥Y72=2¥9

(d) z-%ﬂm—vﬁ:%ﬁwﬁ—&ﬁ:%‘ﬁ

(h)y (2V5+3)(3V5-4)=30-8/5+9/5-12=18+3
(i) (V3 =3V2)(5V/3+v2) =30+2V6 - 15V/6 — 6 = 24 — 136

.5 -4

(j)y "=it-i=1-i=i

Simplify each of the following:
3+45V2 (3+5V2)v2 3V2+10

V2 (V2)V2 T 4
4 4 V2-V3 42-4V3
b = — . — = =4/3-4
(k) V2+V3 V2+V3 V2-V3 2-3 V3-42
2V3+3vV2 2V3+3V2 3WV5+5/3 615+ 30+ 9V10+ 15V6
o - ) =
3WV5-5V3 3/5-5V3 3V5+5V3 45175
_30+15V6+9vV10+6v15 10+ 5v6 +3V10 + 2V15
-30 B 10
d) 1+4V2 (1+4V2)V4 Va+4V8 V4+38

V2 v2-¥a V8 2

The numerical value of a real number N (|N|) is defined as follows:
IN|l=N if N>0; IN|=0 if N=0; IN|l==-N if N<oO.
1, =91, 111, =21, lel; (b) 3 + 4],

Arrange each set of numbers so that they may be separated by <. (a) [-12
[9—6| ]2-8|,|-3-6

(a) 1| <|-2/< 3| <l6]<|-9]<|-12|since 1<2<3<6<9<12.

(b) 19-6/<|2-8|<|3+4|<]|-3-6|since3<6<7<09.

’

)
3

Find the directed distance AB, given (a) A(2), B(6); (b) A(3), B(=7); (¢) A(=2), B(-8); (d) A(-10),
B(2); (e) A(-9), B(-2); (f) A1), B(x); (g) A(x,), B(3); (h) A(x,), B(x,).

(a) AB=6-2=4 (¢c) AB=-8-(-2)=—-6 (¢) AB=-2-(-9)=7 (g) AB=3-x,
(b) AB=-7-3=-10 (d) AB=2-(-10)=12 (f) AB=x-1 (h) AB=x,—-x

(a) On a number scale locate the points A(—5), B(1), C(7) and show that AB + BC + CA = 0. (b) Relabel
the above points, reading from left to right, B(=5), C(1), A(7) and show that AB+ BC + CA = 0.

(a) AB+BC+CA=[1-(-5]+(T-1)+(-5-7)=6+6-12=0
(b) AB+BC+CA=(-5-7)+[1-(=-5]+(7-1)=0

Find the coordinate of the midpoint of the segments AB in Problem 1.23.

(a) 3(2+6)=4 (c) i[-2+(-8)]=-5 (&) 3(—9-2)=-% (g 3(x,+3)
(b) [B+(-N]=-2 (d) 3(-10+2)=-4 (f) (1 +x) (h) 3(x, +x;)
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1.26

1.27

1.28

1.29

1.30

1.31

1.32

Rewrite each of the following, using i:

THE NUMBER SYSTEM OF ALGEBRA

(a) V=5=iV5 (b) v—4=2i (¢) v—a?=ai (d) V=32=4iV/2

8+V-16 8+4i

(e) 3-vV=9=3-3i (f) 5 o =4t
(g) 6-vV-128 6-8iv2 1 2V2.
. 2 12 2 3!

Perform the indicated operations.

(a) (2-5i)+(@4+3i))=Q2+4)+(-5+3)i=6-2i

(b) (3+2i)—(=6-3i)=[3—(—=6)]+[2—(=3)]i=9+5i

(¢) (=5+2/=4)+(1—-V=9)=(-5+4i)+(1-3i)=—-4+i
(d) 2+V=27)-(4-v=-3)=(Q2+3i/3) - (4—iV3) = -2+ 4iV/3

(e) (=2—=vV=8)—(5+vV=27)=(-2-2ivV2) - (5+3iV3) = -7 - (2vV2 + 3V3)i

(f) 2+3)+(2-3i)=4

(g) (2+3i)—(2-3i)=6i

(h) (2—5i)(4+3i)=8+6i—20i —15i*=8 — 14i + 15 = 23 — 14i
(i) (2+3)2-3i)=4—-6i+6i—9i*=13

Supplementary Problems

Arrange each of the following so that they may be separated by <.
(b) %, 2’ SZ’ —34! 3

-

2 3
(a) 3, -3,

Dl

4 4 1
»—L,5, 73, 2
Determine the greater of each pair.

(a) |4+ (-2)land|-4|+|-2| (b) |4+ (-2)and|4|+|-2] ()

Convert each of the following fractions into equivalent fractions having the indicated denominator:

(C) i}!J—j’ —%,_JS’O

|4 - (=2)|and |4 - |-2]

(a) 3,15 (b) -3,20 (c) 3,42 (d) 3,35 (e) 13,156

Perform the indicated operations.

(a) (=2)(3)(-5) (h) RGNS (n)
(b) 3(-2)(4) + (=5)(2)(0) (i) §x53
(¢) —8—(—6)+2 (j) 24x2ix1Zx2!

3 2 S ... 35 (0)
(d) 3+35 (k) =+
(e) %“% () 3%+T76 (p)
(f) a—-4-¢% (m) (13x2)~ 13
(g) 3-&-%
Perform the indicated operations.
(a) 5V/3+2/3-8V3 (e) (2v3+3v2)(2V3 —3V2) "
(b) SVI+VRE—-3E  (f) (43— 3V5)(2V3+V5) (h)

_ 4-2V3

(¢) Y12-¥36 (2) —'5?; (i)

(d) (1+v2)(3-v2)

w
|
wiN

Wiy

+ +
Rabali¥- NIV

_
|
00|~

N
|
[ )
wirg

w
|-
|
—
-

2V5-3V2
3v5 + 4V2
V2 -4V3
42 -3V3
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