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PREFACE

The International Conference held during 1st-6th April, 1990, was the Fourth
in the Series organized at Swansea on the theme of Creep and Fracture of
Engineering Materials and Structures’. As with the previous conferences in
1981, 1984 and 1987, authors from virtually every centre active in the field
throughout the world have contributed to make these Proceedings a compre-
hensive ’state-of-the-art’ coverage of recent theoretical and practical advances
in creep and creep fracture.

In addition to attracting authors of international stature, the present Confer-
ence Series has always been most fortunate in its sponsors. For their support
of the social evenings which invariably provide such a splendid forum for
informal discussions, we wish to express our gratitude to the sponsors of the
1990 Swansea Conference, namely

ESH Testing Limited, Brierley Hill, West Midlands

Severn Furnaces Limited, Thornbury, Bristol

Automatic Systems Laboratories Ltd., Milton Keynes, Bucks
W.H. Mayes & Son, Windsor, Berkshire

The social programme was also greatly enhanced by a Civic Reception
and a concert from the Morriston Orpheus Choir which was organized at the
Brangwyn Hall by the Lord Mayor and the Swansea City Council. For their
generosity and hospitality we offer our thanks on behalf of all delegates.

A successful Conference Series also depends on many people contributing
well beyond the call of duty. The 1990 Conference was again held, with the
wholehearted endorsement of the delegates attending the earlier meetings, at
the Clyne Castle site of the University College, Swansea. We are again
indebted to the staff at Clyne Castle for their outstanding service which
contributed so much to the splendid atmosphere generated. Moreover, for
many months of effort which demonstrated their administrative talents,
patience and unfailing cheefulness, we offer our genuine appreciation to the
Conference Secretaries, Mrs. Janice Price and Mrs. Vivienne Jenkins.

B. Wilshire
R.W. Evans

University College Swansea
April, 1990.
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ON THE EVIDENCE FOR DIFFUSIONAL CREEP PROCESSES
B. Wilshire

IRC in "Materials for High Performance Applications’,
Department of Materials Engineering, University College, Swansea SA2 8PP

SUMMARY

The few inconclusive experimental observations quoted as evidence for
diffusional creep processes do not justify the common assumption that high
temperature creep of polycrystalline materials normally occurs at low stresses
by stress-directed vacancy flow without dislocation movement.

INTRODUCTION

The high temperature creep properties of crystalline solids have generally
been discussed by reference to the variations of the secondary or steady-state
creep rate (¢,) with stress (0), grain size (d) and temperature (T), using a power
law relationship of the form

g, =Ac"(1/d)"exp—Q,/RT (L

where A, n and m are constants and Q, is the activation energy for creep.
However, when this approach has been adopted, the values of the ’constants’
n, m and Q, have usually been found to vary depending on the creep
conditions imposed. The observed variations in n, m and Q, have then been
explained on the basis that different mechanisms control the creep behaviour
in different stress/temperature regimes. Furthermore, it has also been widely
assumed that the dominant creep mechanism in any stress/temperature regime
can be identified by comparing the measured values of n, m and Q_ with the
values predicted theoretically for individual creep processes.

During the last decade, a direct challenge to these traditional
‘steady-state’ or ’power-law’ ideas has been provided by an alternative
theoretical and practical approach to creep, termed the 6 Projection Concept
(1,2). In this case, the view that a ’steady-state’ creep rate occurs is
abandoned. Instead, the normal creep curves observed at high temperatures
are considered in terms a decaying primary curve and an accelerating tertiary
component, ie the ’secondary stage’ is merely the period of apparently
constant creep rate found when the decaying primary creep rate is offset by the
acceleration due to tertiary processes, eg intergranular damage accumulation,
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microstructural instability, etc. The 6 Project Concept then offers detailed
equations which accurately describe the full creep curve shape and the
changes in creep curve shape with changing stress and temperature (2).

A firm theoretical foundation has been provided for this new approach,
based on the micromechanisms responsible for primary and tertiary creep (2).
Moreover, the 6 Projection Concept offers the major practical advantage of
allowing the long-term creep and creep rupture properties of metals and alloys
to be predicted accurately by extrapolation of data derived from short-term
constant-stress creep curves (1,2). Thus, analysis of creep curves obtained
only at high stresses for polycrystalline copper (3) predicts exactly the gradual
decrease in n and Q, with decreasing stress and temperature which has
traditionally been taken as evidence for a transition from dislocation to
diffusional creep. Indeed, as evident from Figure 1, analysis of data recorded
at high stresses predicts all features of the deformation mechanism map
constructed for polycrystalline copper (4). On this basis, no changes in creep
mechanism need be invoked to explain the gradual decrease in n and Q_ with
decreasing stress and temperature. Instead, the complex stress and tempera-
ture dependences of n and Q, are seen to be simple consequences of the
variation in creep curve shape with test conditions which can now be
described quantitatively using the 6 Projection Concept (1,2,3).

The explanation for the changes in n and Q, provided by the 6 Projection
Concept appear to conflict directly with the traditional view that variations in
n and Q, are attributable to a change from dislocation to diffusional creep
processes. Yet, diffusional creep theories are elegant (5-7) and have been
widely assumed to account for the creep properties expected at low stresses.
For these reasons, it is useful to review the experimental data which has been
quoted as evidence for diffusional creep.
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Figure 1. Deformation mechanism map for polycrystalline copper (4), togeth-
er with contours of n ~ 1 and Q, ~ 125 kJmol* obtained by analyses of
high-stress creep data using the 6 Projection Concept (3).
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THE STRESS AND TEMPERATURE DEPENDENCE OF CREEP AT
LOW STRESSES

The general acceptance of diffusional creep concepts is such that, since
the theories predict that n ~ 1 (5-7), creep measurements showing n values
close to unity are commonly taken as sufficient reason for assuming that
diffusional creep processes are rate-controlling. Yet, there is unambiguous
evidence to prove that this tautological argument need not be valid. For
instance, since the original work of Harper and Dorn (8), many studies have
shown that the n value decreases towards unity with decreasing stress for both
single and polycrystalline materials, as illustrated for aluminium in Figure 2
(9). Diffusional creep processes, which would be imperceptibly slow with
single crystals, cannot be relevant when n values close to unity occur with
single crystals at low stresses. Thus, n values near to unity do not guarantee
that diffusional creep processes are rate-determining.

For single crystals of materials such as aluminium, creep must occur by
dislocation creep processes even at low stresses. The observation that single
crystals display creep rates of the order of those found for polycrystalline
materials (Figure 2) then suggests that creep of both single and polycrystalline
materials occurs by diffusion-controlled generation and movement of disloca-
tions at both high and low stresses, (8,9). In this way, a straight forward
explanation is also provided for the observation that Q, decreases from values
around those for self diffusion as the temperature is decreased in the n ~ 1
regime. This transition has usually been explained on the basis that, in the
diffusional creep regime, diffusion occurs predominantly through the lattice at
high temperatures (known as Nabarro-Herring creep) and preferentially along
grain boundaries at lower temperatures (termed Coble creep). However, a
similar transition in Q_ value occurs even when creep unquestionably takes
place by dislocation processes, a fact attributed to pipe-diffusion becoming
progressively more important as the temperature is decreased towards 0.4T,,
(where T_ is the absolute melting point). Hence, n and Q_, measurements do
not prove whether dislocation or diffusional creep mechanisms are dominant.
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Figure 2. Stress dependence of the secondary creep rate for aluminium at
temperatures between 914 and 925K (9).
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THE GRAIN SIZE DEPENDENCE OF CREEP AT LOW STRESSES

The results in Figure 2 show that for aluminium (8,9), as with many other
single-phase materials (10,11,12), single crystals and polycrystalline samples
display creep rates of similar magnitude under the same low-stress test
conditions. In relation to equation 1, this means that the creep rate is almost
grain size insensitive, so that m ~ 0. Values of m close to zero would be
expected when dislocation processes control creep behaviour, a conclusion
compatible with the proposal that creep of aluminium occurs by diffusion-con-
trolled generation and movement of dislocations in both the n ~ 5 and n ~ 1
regimes of Figure 2. In contrast, diffusional creep theories predict m = 2 for
Nabarro-Herring creep and m = 3 for Coble creep (5-7). Data consistent with
these large m values have been reported, as shown for copper in Figure 3 (13).
However, there are problems associated with interpretation of creep data
obtained for pure metals at high fractions of their melting points.

With pure polycrystalline copper tested at temperatures from about 0.4 to
0.6 T, a minimum creep rate occurs when the decaying primary rate is offset
by the acceleration due to intergranular damage development (3). However, at
higher temperatures, the decay in the primary creep rate and certainly the
acceleration during the tertiary stage can be modified considerably by grain
growth and recrystallization, giving minimum creep rates higher than those
expected for microstructurally-stable material. Indeed, at temperatures be-
tween 0.6 and 0.8 T_ depending on the purity of the polycrystalline copper
(14), dynamic recrystallization can suppress grain boundary cavitation so that
fracture occurs by necking to a point (rupture) rather than by intergranular
crack development. Under these conditions, it would be anticipated that the
effects of microstructural instability would be less pronounced under fixed test
conditions when longer annealing times and/or higher annealing temperatures
are used to produce larger more stable grain sizes. Consequently, considerable

£ /0, m2 /MNs
3
T

1 0 10 v«
Grain Size, pm

Figure 3. The variation of the creep rate per unit stress with grain size for
polycrystalline copper tested at 0.61 and 0.82T_, (13).



