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Abstract

We study highest weight representations of shifted Yangians over an alge-
braically closed field of characteristic 0. In particular, we classify the finite dimen-
sional irreducible representations and explain how to compute their Gelfand-Tsetlin
characters in terms of known characters of standard modules and certain Kazhdan-
Lusztig polynomials. Our approach exploits the relationship between shifted Yan-
gians and the finite W-algebras associated to nilpotent orbits in general linear Lie
algebras.
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CHAPTER 1

Introduction

Following work of Premet, there has been renewed interest recently in the rep-
resentation theory of certain algebras that are associated to nilpotent orbits in
complex semisimple Lie algebras. We refer to these algebras as finite W -algebras.
They should be viewed as analogues of universal enveloping algebras for the Slodowy
slice through the nilpotent orbit in question. Actually, in the special cases consid-
ered in this article, the definition of these algebras first appeared in 1979 in the
Ph.D. thesis of Lynch [Ly], extending the celebrated work of Kostant [Ko2] treat-
ing regular nilpotent orbits. However, despite quite a lot of attention by a number
of authors since then, see e.g. [Ka, M, Ma, BT, VD, GG, P1, P2, DK], there
is still surprisingly little concrete information about the representation theory of
these algebras to be found in the literature. The goal in this article is to undertake
a thorough study of finite dimensional representations of the finite W-algebras as-
sociated to nilpotent orbits in the Lie algebra gl (C). We are able to make progress
in this case thanks largely to the relationship between finite W-algebras and shifted
Yangians first noticed in [RS, BR] and developed in full generality in [BK5].

Fix for the remainder of the introduction a partition A = (p; < --- < p,) of
N. We draw the Young diagram of A in a slightly unconventional way, so that
there are p; boxes in the ith row, numbering rows 1,...,n from top to bottom in
order of increasing length. Also number the non-empty columns of this diagram
by 1,...,l from left to right, and let ¢; denote the number of boxes in the ith
column, so \' = (g1 > --- > ¢q) is the transpose partition to \. For example, if
(p1,p2,p3) = (2,3,4) then the Young diagram of ) is

1[4
2[5]7
3/6[8]9]

and (¢1,92,93,94) = (3,3,2,1). We number the boxes of the diagram by 1,2,..., N
down columns from left to right, and let row(i) and col(i) denote the row and
column numbers of the ith box.

Writing e; ; for the ij-matrix unit in the Lie algebra g = gl (C), let e denote
the matrix ), . e; ; summing over all 1 < i,5j < N such that row(i) = row(j) and
col(i) = col(j) — 1. This is a nilpotent matrix of Jordan type . For instance, if \ is
as above, then e = e; 4 +es5+e57+e€36+e68+€s9. Define a Z-grading g = @jGZ g
of the Lie algebra g by declaring that each e; ; is of degree (col(j) — col(i)). This
is a good grading for e € g; in the sense of [KRW] (see also [EK] for the full
classification). However, it is not the usual Dynkin grading arising from an sl,-
triple unless all the parts of A are equal. Actually, in the main body of the article,
we work with more general good gradings than the one described here, replacing
the Young diagram of A with a more general diagram called a pyramid and denoted

1



2 1. INTRODUCTION

by the symbol 7: see §3.1. When the pyramid 7 is left-justified, it coincides with the
Young diagram of A\. We have chosen to focus just on this case in the introduction,
since it plays a distinguished role in the theory.

Now we give a formal definition of the finite W-algebra W (\) associated to this
data. Let p denote the parabolic subalgebra @jzo g; of g with Levi factor h = gy,
and let m denote the opposite nilradical EBj <0 8;- Taking the trace form with e
defines a one dimensional representation y : m — C. Let I, be the two-sided ideal
of the universal enveloping algebra U(m) generated by ker y. Let n: U(p) — U(p)
be the automorphism mapping e; j — €; ; + 0; j (1 — Geol(j) — deol(j)+1 — - — @) for
each e; ; € p. Then, by our definition, W (X) is the following subalgebra of U(p):

W) = {u e Up) | [,n(w)] € Ulg)I for all z € m};

see §3.2. The twist by the automorphism 7 here is unconventional but quite conve-
nient later on; it is analogous to “shifting by p” in the definition of Harish-Chandra
homomorphism. For examples, if the Young diagram of A\ consists of a single col-
umn and e is the zero matrix, W(\) coincides with the entire universal enveloping
algebra U(g). At the other extreme, if the Young diagram of A consists of a single
row and e is a regular nilpotent element, the work of Kostant [Ko2] shows that
W () is isomorphic to the center of U(g), in particular it is commutative.

For u € W (), right multiplication by n(u) leaves U(g)l, invariant, so induces

a well-defined right action of u on the generalized Gelfand-Graev representation
Qx =U(9)/U(g)]y = U(g) @u(m) Cy

This makes @, into a (U(g), W(\))-bimodule. The associated algebra homomor-

phism W(X) — Endyg)(Qy)°" is actually an isomorphism, giving an alternate

definition of W () as an endomorphism algebra.

Another useful construction involves the homomorphism ¢ : U(p) — U(h)
induced by the natural projection p — h. The restriction of £ to W () defines an
injective algebra homomorphism W (\) — U(h) which we call the Miura transform:
see §3.6. To explain its signigicance, we note that h = gl, (C)&---@gl,, (C), so U(h)
is naturally identified with the tensor product U(gl,, (C)) @ ---@U(gl,, (C)). Given
gl,, (C)-modules M; for each i = 1,...,l, the outer tensor product M; ¥ --- & M,
is therefore a U(h)-module in the natural way. Hence, restricting via the Miura
transform, M; X --- X M; is a W(\)-module too. This construction plays the role
of tensor product in the representation theory of W(\).

Next we want to recall the connection between W (\) and shifted Yangians. Let
o be the upper triangular n x n matrix with ij-entry (p; —p;) for i < j. The shifted
Yangian Y, (o) associated to o is the associative algebra over C with generators
D,m (1<i<n,r> 0),E1§7') (1 <i<mn,r>pi1 —p;) and F,-(") (1<i<mn,r>0)
subject to certain relations recorded explicitly in §2.1. In the case that o is the
zero matrix, i.e. all parts of A are equal, Y,,(0) is precisely the usual Yangian Y,
associated to the Lie algebra gl,,(C) and the defining relations are a variation on
the Drinfeld presentation of [D]: see [BK4]. In general, the presentation of Y, (o) is
adapted to its natural triangular decomposition, allowing us to study representations
in terms of highest weight theory. In particular, the subalgebra generated by all
the elements Df") is a maximal commutative subalgebra which we call the Gelfand-
Tsetlin subalgebra. We often work with the generating functions

Di(u) =1+ Df”zf1 +DPu? 4 ... € Yp(o)[[uY]).
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The main result of [BK5] shows that the finite W-algebra W () is isomorphic to
the quotient of ¥, (o) by the two-sided ideal generated by all D\") (r > p;). The
precise identification of W () with this quotient is described in §3.4. Also in §3.6,
we explain how the tensor product construction outlined in the previous paragraph
is induced by the comultiplication of the Hopf algebra Y.

We are ready to describe the first results about representation theory. We call a
vector v in a Y, (o)-module M a highest weight vector if it is annihilated by all Ej(v')
and each D,Zm acts on v by a scalar. A critical point is that if v is a highest weight
vector in a W (\)-module, viewed as a Y;,(0)-module via the map Y, (o) = W (\),
then in fact D,Er)v = 0 for all » > p;. This is obvious for ¢ = 1, since the image
of DY) in W () is zero by the definition of the map for all » > p;. For i > 1, it
follows from the following fundamental result proved in §3.7: for any ¢ and r > p;,
the image of DE"') in W(A) is congruent to zero modulo the left ideal generated by
all EJ(S) Hence, if v is a highest weight vector in a W (A)-module, then there exist
scalars (a; j)1<i<n,1<j<p, such that

uP' Di(u)v = (u+a11)(u+ar2) - (u+ aip,)v,
(u—=1)2Dy(u—1)v = (u+az1)(u+az2) - (u+azp,)v,

(u=—n+1""Dy(u—n+1v=(u+an1)(u+ans2) - (u+app,)v.

Let A be the A-tableau obtained by writing the scalars a; 1, ..., a;,, into the boxes
on the ith row of the Young diagram of A. In this way, the highest weights that can
arise in W (A)-modules are parametrized by the set Row()\) of row symmetrized -
tableauz, i.e. tableaux of shape A with entries from C viewed up to row equivalence.
Conversely, given any row symmetrized A-tableau A € Row(\), there exists a (non-
zero) universal highest weight module M (A) generated by such a highest weight
vector; see §6.1. We call M (A) the generalized Verma module of type A. By familiar
arguments, M (A) has a unique irreducible quotient L(A), and then the modules
{L(A) | A € Row())} give all irreducible highest weight modules for W () up to
isomorphism.

There is a natural abelian category M () which is an analogue of the BGG cat-
egory O for the algebra W(\); see §7.5. (Actually, M(A) is more like the category
O obtained by weakening the hypothesis that a Cartan subalgebra acts semisim-
ply in the usual definition of 0.) All objects in M () are of finite length, and the
simple objects are precisely the irreducible highest weight modules, hence the iso-
morphism classes {[L(A)]| A € Row(\)} give a canonical basis for the Grothendieck
group [M(A)] of the category M(X). The generalized Verma modules belong to
M(A) too, and it is natural to consider the composition multiplicities [M (A) : L(B)]
for A, B € Row(A). We will formulate a precise combinatorial conjecture for these,
in the spirit of the Kazhdan-Lusztig conjecture, later on in the introduction. For
now, we just record the following basic result about the structure of Verma modules;
see §6.3. For the statement, let < denote the Bruhat ordering on row symmetrized
A-tableaux; see §4.1.
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THEOREM A (Linkage principle). For A,B € Row()), the composition
multiplicity [M(A) : L(A)] is equal to 1, and [M(A) : L(B)] # 0 if and only if
B < A in the Bruhat ordering.

Hence, {[M(A)] | A € Row(\)} is another natural basis for the Grothendieck
group [M())]. We want to say a few words about the proof of Theorem A, since it
involves an interesting technique. Modules in the category M(\) possess Gelfand-
Tsetlin characters; see §5.2. This is a formal notion that keeps track of the di-
mensions of the generalized weight space decomposition of a module with respect
to the Gelfand-Tsetlin subalgebra of Y,, (o), similar in spirit to the g-characters of
Frenkel and Reshetikhin [FR]. The map sending a module to its Gelfand-Tsetlin
character induces an embedding of the Grothendieck group [M ()] into a certain
completion of the ring of Laurent polynomials Z[y! |i = 1,...,n,a € C], for in-
determinates y; ,. The key step in our proof of Theorem A is the computation of
the Gelfand-Tsetlin character of the Verma module M (A) itself; see §6.2 for the
precise statement. In general, ch M(A) is an infinite sum of monomials in the y;-'’s
involving both positive and negative powers, but the highest weight vector of M (A)
contributes just the positive monomial

Yi,a1,1 -+ - Yla1.p, X Y2,a5, - -Y2,a2 4, X X Ynayq - Ynoan p, o

where a; 1, ..., a;,, are the entries in the ith row of A as above. The highest weight
vector of any composition factor contributes a similar such positive monomial. So
by analyzing the positive monomials appearing in the formula for ch M (A), we get
information about the possible L(B)’s that can be composition factors of M(A).
The Bruhat ordering on tableaux emerges naturally out of these considerations.

Another important property of Verma modules has to do with tensor products.
Let A € Row(\) be a row symmetrized A-tableau. Pick any representative for it and
let A; denote the ith column of this representative with entries a;1,...,a; 4, read
from top to bottom. Let M(A;) denote the usual Verma module for the Lie algebra
gl,, (C) generated by a highest weight vector vy annihilated by all strictly upper
triangular matrices and on which e; ; acts as the scalar (a; j; +n—¢; +j—1) for each
j=1,...,q;. Via the Miura transform, the tensor product M(A4;) X --- X M(A4;)
is then naturally a W(A)-module as explained above, and the vector v; ® -+ ®@ vy
is a highest weight vector of type A in this tensor product. In fact, our formula for
the Gelfand-Tsetlin character of M(A) implies that

[M(A)] = [M(A}) & --- R M(4)],

equality in the Grothendieck group [M(A)]. The first part of the next theorem,
proved in §6.4, is a consequence of this equality; the second part is an application
of [FOJ.

THEOREM B (Structure of center). Identifying W (\) with the endomor-
phism algebra of Qy, the natural multiplication map v : Z(U(g)) — Endyg)(Qy)
defines an algebra isomorphism between the center of U(g) and the center of W(\).
Moreover, W () is free as a module over its center.

Now we switch our attention to finite dimensional W (\)-modules. Let F(\)
denote the category of all finite dimensional W (\)-module, viewed as a subcategory
of the category M (). The problem of classifying all finite dimensional irreducible
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W (A)-modules reduces to determining precisely which A € Row(\) have the prop-
erty that L(A) is finite dimensional. To formulate the final result, we need one
more definition. Call a A\-tableau A with entries in C column strict if in every col-
umn the entries belong to the same coset of C modulo Z and are strictly increasing
from bottom to top. Let Col(A) denote the set of all such column strict A-tableaux.
There is an obvious map
R : Col(A) — Row(A)

mapping a A-tableau to its row equivalence class. Let Dom(\) denote the image of
this map, the set of all dominant row symmetrized A-tableaux.

THEOREM C (Finite dimensional irreducible representations).  For
A € Row(\), the irreducible highest weight module L(A) is finite dimensional if and
only if A is dominant. Hence, the modules {L(A)| A € Dom(\)} form a complete
set of pairwise non-isomorphic finite dimensional irreducible W (\)-modules.

To prove this, there are two steps: one needs to show first that each L(A) with
A € Dom(\) is finite dimensional, and second that all other L(A)’s are infinite
dimensional. Let us explain the argument for the first step. Given A € Col()),
let A; be its ith column and define L(A;) to be the unique irreducible quotient
of the Verma module M(A4;) introduced above. Because A is column strict, each
L(A;) is a finite dimensional irreducible gl (C)-module. Hence we obtain a finite
dimensional W (\)-module

V(A) = L(A) B R L(Ay),

which we call the standard module corresponding to A € Col(A). It contains an
obvious highest weight vector of type equal to the row equivalence class of A. This
simple construction is enough to finish the first step of the proof. The second step is
actually much harder, and is an extension of the proof due to Tarasov [T1, T2] and
Drinfeld [D] of the classification of finite dimensional irreducible representations of
the Yangian Y,, by Drinfeld polynomials. 1t is based on the remarkable fact that
when n = 2, i.e. the Young diagram of X has just two rows, every L(A)(A € Row(\))
can be expressed as an irreducible tensor product; see §7.1.

Amongst all the standard modules, there are some special ones which are high-
est weight modules and whose isomorphism classes form a basis for the Grothendieck
group of the category F(\). Let A € Col(\) be a column strict A\-tableau with en-
tries a;1,...,a;p, in its ith row read from left to right. We say that A is standard
if a;j <a;p forevery 1 <i <mnand1<j <k <p,;such that a; ; and a;; belong
to the same coset of C modulo Z. If all entries of A are integers, this is the usual
definition of a standard tableau: entries increase strictly up columns and weakly
along rows. Let Std(\) denote the set of all standard A-tableaux A € Col()A). Our
proof of the next theorem is based on an argument due to Chari [C] in the context
of quantum affine algebras; see §7.3.

THEOREM D (Highest weight standard modules). For A € Std()\), the
standard module V (A) is a highest weight module of highest weight equal to the row
equivalence class of A.

Most of the results so far are analogous to well known results in the repre-
sentation theory of Yangians and quantum affine algebras, and do not exploit the
finite W-algebra side of the picture in any significant way. To remedy this, we
need to apply Skryabin’s theorem from [Sk]|; see §8.1. This asserts that the functor
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Qy®w(n? gives an equivalence of categories between the category of all W(\)-
modules and the category W(A) of all generalized Whittaker modules, namely, all
g-modules on which (z — x(x)) acts locally nilpotently for all x € m. For any finite
dimensional g-module V', it is obvious that the functor ? @ V maps objects in W(A)
to objects in W(A). Transporting through Skryabin’s equivalence of categories, we
obtain a functor ? ® V on W(\)-mod itself; see §8.2. In this way, one can intro-
duce translation functors on the categories M(\) and F (). Actually, we just need
some special translation functors, peculiar to the type A theory and denoted e;, f;
for i € C, which arise from ®’ing with the natural gl (C)-module and its dual.
These functors fit into the axiomatic framework developed recently by Chuang and
Rouquier [CR]: see §8.3.

Now recall the parabolic subalgebra p of g with Levi factor . We let O(X\)
denote the corresponding parabolic category O, the category of all finitely generated
g-modules on which p acts locally finitely and b acts semisimply. For A € Col()\)
with entry a; in its ith box, we let N(A) € O(\) denote the parabolic Verma module
generated by a highest weight vector v, that is annihilated by all strictly upper
triangular matrices in g and on which e; ; acts as the scalar (a; + i — 1) for each
i=1,...,N. Let K(A) denote the unique irreducible quotient of N(A). Both of
the sets {[N(A)] | A € Col(\)} and {[K(A)]| A € Col(\)} form natural bases for
the Grothendieck group [O(A)]. There is a remarkable functor

V:00) — F()

introduced originally (in a slightly different form) by Kostant and Lynch. We call it
the Whittaker functor; see §8.5. It is an exact functor preserving central characters
and commuting with translation functors. Moreover, it maps the parabolic Verma
module N(A) to the standard module V(A) for every A € Col(\). The culmination
of this article is the following theorem.

THEOREM E (Construction of irreducible modules). The Whittaker func-
tor V: O(\) — F(N) sends irreducible modules to irreducible modules or zero. More
precisely, take any A € Col(\) and let B € Row(\) be its row equivalence class.
Then B) ifA

. ~ | L(B) 1 s standard,
V(K(4)) = { 0 otherwise.

Every finite dimensional irreducible W (\)-module arises in this way.

There are three main ingredients to the proof of this theorem. First, we need
detailed information about the translation functors e;, f;, much of which is provided
by [CR] as an application of the representation theory of degenerate affine Hecke
algebras. Second, we need to know that the standard modules V(A) have simple
cosocle if A € Std()), which follows from Theorem D. Finally, we need to apply
the Kazhdan-Lusztig conjecture for the Lie algebra gl (C) in order to determine
exactly when V(K (A)) is non-zero.

Let us discuss some of the combinatorial consequences of Theorem E in more
detail. For this, we at last restrict our attention just to modules having integral
central character. Let Rowq(\), Colg(A), Domg(A) and Stdg(A) denote the subsets
of Row(A), Col(\), Dom(A) and Std(\) consisting of the tableaux all of whose entries
are integers. The restriction of the map R actually gives a bijection between the sets
Stdp(A) and Domg(A). Let Og(A), Fo(A) and M(\) denote the full subcategories
of O(N), F(A) and M()) consiting of objects all of whose composition factors
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are of the form {K(A)| A € Coly(A)}, {L(A) | A € Domg(\)} and {L(A) | A €
Rowg(A)}, respectively. The isomorphism classes of these three sets of objects give
canonical bases for the Grothendieck groups [Og(N)], [Fo(A)] and [Mg(X)], as do
the isomorphism classes of the parabolic Verma modules {N(A) | A € Coly()\)},
the standard modules {V(A) | A € Stdy(\)}, and the generalized Verma modules
{M(A)| A € Rowgy(\)}, respectively.

The functor V above restricts to an exact functor V : Oy(\) — Fy(A), and we
also have the natural embedding I of the category Fy(A) into M (). At the level
of Grothendieck groups, these functors induce maps

v I

[Oo(N)] = [Fo(N)] = [Mo(N)].
The translation functors e;, f; for i € Z (and more generally their divided pow-
ers €, f") defined as in [CR]) induce maps also denoted e;, f; on all these

1 1

Grothendieck groups. The resulting maps satisfy the relations of the Chevalley
generators (and their divided powers) for the Kostant Z-form Uz of the universal
enveloping algebra of the Lie algebra gl (C), that is, the Lie algebra of matrices
with rows and columns labelled by Z all but finitely many of which are zero. The
maps V and I are then Uz-module homomorphisms with respect to these actions.

Now the point is that all of this categorifies a well known situation in linear
algebra. Let V7 denote the natural Uz-module, with basis v; (i € Z). We write
/\’\’(VZ) for the tensor product A (V) @ --- @ A" (Vz) and S*(V3) for the tensor
product SP1(Vy) @ --- @ SP»(Vz). These free Z-modules have natural monomial
bases denoted { N4 | A € Colg(\)} and { M4 | A € Row(\)}, respectively; see §4.2.
A well known consequence of the Littlewood-Richardson rule (observed already by
Young long before) implies that the space

Homy, (A" (Vz), $*(Vz))

is a free Z-module of rank one; indeed, there is a canonical Uz-module homomor-
phism V : /\’\,( Vz) — S*(Vz) that generates the space of all such maps. The image
of this map is P*(Vz), a familiar Z-form for the irreducible polynomial representa-
tion of gl__(C) labelled by the partition X. So by definition P*(V7) is a subspace
of S*(V3):; we denote the natural inclusion by I. Recall P*(Vz) also possesses a
standard monomial basis {V4|A € Stdy(A)}, defined from V4 = V(N 4). Finally, we
let i : AN (Va) — [Oo(N)], j : PA(Va) — [Fo(N)] and k : S*(Vz) — [Mo(N)] be the
Z-module homomorphisms sending Ny +— N(A), V4 — [V(A)] and M4 — [M(A)]
for A € Coly()N), A € Stdy(A) and A € Rowq(A), respectively.

THEOREM F (Categorification of polynomial functors). The maps i, j, k
are all isomorphisms of Uz-modules, and the following diagram commutes:

A (Vz) —— P V) —— $*(Va)
,i l, lk
[Oo(N)] —— [Fo(N)] —— Mo(N)].
Moreover, setting La = j~([L(A)]) for A € Domg()), the basis {L4|A € Domg(A)}

coincides with Lusztig’s dual canonical basis/Kashiwara’s upper global crystal basis
for the polynomial representation P*(Vz).
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Again, the Kazhdan-Lusztig conjecture plays the central role in the proof of
this theorem. Actually, we use the following increasingly well known reformula-
tion of the Kazhdan-Lusztig conjecture in type A: setting K4 = i ' ([K(A)]), the
basis {K4 | A € Coly(N)} coincides with the dual canonical basis for the space
/\’\,(VZ). In particular, this implies that the decomposition numbers [V (A) : L(B)]
for A € Stdp(A) and B € Domg(A) can be computed in terms of certain Kazhdan-
Lusztig polynomials associated to the symmetric group Sy evaluated at ¢ = 1.
From a special case, one can also recover the analogous result for the Yangian Y,
itself. We mention this, because it is interesting to compare the strategy followed
here with that of Arakawa [A1], who also computes the decomposition matrices of
the Yangian in terms of Kazhdan-Lusztig polynomials starting from the Kazhdan-
Lusztig conjecture for the Lie algebra gl (C), via [AS]. We speculate that there is
also a geometric approach to the representation theory of shifted Yangians in the
spirit of [V].

As promised earlier in the introduction, let us now formulate a precise con-
jecture that explains how to compute the decomposition numbers [M(A) : L(B)]
for all A, B € Rowg()), also in terms of Kazhdan-Lusztig polynomials associated
to the symmetric group Sy. Setting L4 = k~!([L(A)]) for any A € Rowg()), we
conjecture that {L4 | A € Row(())} coincides with the dual canonical basis for the
space S*(Vz); see §7.5. This is a purely combinatorial reformulation in type A of
the conjecture of de Vos and van Driel [VD] for arbitrary finite W-algebras, and
is consistent with an idea of Premet that there should be an equivalence of cate-
gories between the category M(\) here and a certain category N (\) considered by
Mili¢ic and Soergel [MS]. Our conjecture is known to be true in the special case
that the Young diagram of X consists of a single column: in that case it is precisely
the Kazhdan-Lusztig conjecture for the Lie algebra gl (C). It is also true if the
Young diagram of A has at most two rows, as can be verified by comparing the
explicit construction of the simple highest weight modules in the two row case from
§7.1 with the explicit description of the dual canonical basis in this case from [B,
Theorem 20]. Finally, Theorem E would be an easy consequence of this conjecture.

In a forthcoming article [BK6], we will study the categories of polynomial and
rational representations of W (\) in more detail. In particular, we will make precise
the relationship between polynomial representations of W () and representations
of degenerate cyclotomic Hecke algebras, and we will relate the Whittaker functor
V to work of Soergel [S] and Backelin [Ba]. This should have applications to the
representation theory of affine W-algebras in the spirit of [A2].
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CHAPTER 2

Shifted Yangians

We will work from now on over an algebraically closed field F of characteristic
0. Let > denote the partial order on F defined by z > y if (z — y) € N, where
N denotes {0,1,2,...} C F. We write simply gl,, for the Lie algebra gl,,(F). In
this preliminary chapter, we collect some basic definitions and results about shifted
Yangians, most of which are taken from [BK5]. By a shift matriz we mean a matrix
o = (8i,j)1<ij<n of non-negative integers such that

(21) Si,j -+ Sj'k = Sik
whenever [i—j|4|j—k| = |i—k|. Note this means that s; 1 = -+ = s, , = 0, and the
matrix o is completely determined by the upper diagonal entries s 2, 82.3,...,Sp—1.n

and the lower diagonal entries s3 1, 532, ..., Sn.n—1. We fix such a matrix o through-
out the chapter.

2.1. Generators and relations

The shifted Yangian associated to the matrix o is the algebra Y, (o) over F
defined by generators

(2.2) (D) |1 <i<n,r>0},
(2.3) (BN [1<i<nr>siin),
(2.4) (F 11 <i<nr> s}
subject to certain relations. In order to write down these relations, let
(2.5) Di(u) =Y D{"u" € Y (o) [[u™"]]
>0
where D( = 1, and then define some new elements D(T) of Y, (o) from the equation
(2.6) Di(u) =Y D{"u" := —Di(u)~".
r>0

With this notation, the relations are as follows.

(r) (s)y _
(2.7) (D", D] =0,
r+s—1

(2.8) [ED,F®) =6, Z DYDY,
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r—1
(r) (s) (t) (r+s—1—t)
(2.9) (D", ) = (61,5 — bij41) D D;E; ;
t=0
() (s) -
T) s (r+s—1—t) ()
(2.10) [D;”, F;”) = (8i 41— 6i5) D _F; 779D,
t=0
(2.11) B, B — (B, B = BB + EFED,
(212) [Fi(r+1)? F;(S)] _ [Fi(r)ﬁFi(s_‘_l)] — E(T)FI-(S) 41 Fi(S)Fz'(r)
(2.13) B, B - (BT, B = —EPER),
(2.14) D FQ) = (R P = —FQFD,
(2.15) [EM EP]=0 ifli—j>1,
(2.16) [ED FP =0 ifli-j|>1,
@17 (B (ED EPN+ B BV, EP =0 ifli-jl=1,
(r) (s) p(t) (s) () (t) _ o R
(2.18) [ [F; 7Fj I+ [F [F; F, I=0 if i —jl=1,
for all meaningful r, s,t,14, 7. (For example, the relation (2.13) should be understood
to hold for alli =1, ..., n—2,7r>8;;+1 and § > S;11.i42.)

It is often helpful to view Y, (o) as an algebra graded by the root lattice @,
associated to the Lie algebra gl,,. Let ¢ be the (abelian) Lie subalgebra of Y, (o)

spanned by the elements D(l) D(l) Let #1,...,&, be the basis for ¢* dual to
the basis D§1), ‘3 ang (1) . We refer to elements of ¢* as weights and elements of

(2.19) P, = @Zsi cc
=1

as integral weights. The root lattice associated to the Lie algebra gl,, is then the
Z-submodule @,, of P, spanned by the simple roots ¢; —e;41 for i =1,...,n — 1.
We have the usual dominance ordering on ¢* defined by a > 3 if (o — 3) is a sum
of simple roots. With this notation set up, the relations imply that we can define
a Q,-grading
(2.20) Yo(o) = €D (Yu(o))

a€Qn
of the algebra Y, (o) by declaring that the generators Dfr).Ef") and Fl-(r) are of
degrees 0,e; — ;.1 and £;.1 — &;, respectively.

2.2. PBW theorem

For 1 <i < j <mnandr>s;;resp. r > s;,;, we inductively define the higher

root elements E-(y'-) resp. F-(T-) of Y, (o) from the formulae

” T r (r—sj—1.; sJ i+1

(2.21) B =B, B =g glesatt)
~ T Sj.j— 1 T—8; -1

(2.22) Fio, =87, Y =[pry- gy



