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Preface

When I was an undergraduate, computers were just beginning to be introduced
into the university curriculum. Physics majors were expected to take a single
semester of Pascal taught by the computer science department. We wrote pro-
grams to sort lists, process a payroll, and so forth, but were expected to acquire
the specialized tools of scientific computing on our own. Most of us wasted
many human and computer hours learning them by trial and error.

In recent years, many departments have added a computational physics
course, taught by physicists, to their curricula. However, there is still con-
siderable debate as to how this coursetshould be organized. My philosophy is
to use the upper division/graduate mathematical physics course as a model.
Consider the following parallels between this text and a typical math physics
book: A variety of numerical and analytical techniques used in physics are cov-
ered. Topics include ordinary and partial differential equations, linear algebra,
Fourier transforms, integration, and probability. Because the text is written for
physicists, these techniques are applied to solving realistic problems, many of
which the students have encountered in other courses.

Numerical Methods for Physics is organized to cover what I believe are the
most important, basic computational methods for physicists. The structure
of the book differs considerably from the generic numerical analysis text. For
example, about a third of the book is devoted to partial differential equations.
This emphasis is natural considering the fundamental importance of Maxwell’s
equations, the Schrodinger equation, the Boltzmann equation, and so forth.
Chapters 6 and 7 introduce some methods in computational fluid dynamics, an
increasingly important topic in the fields of nonlinear physics, environmental
physics, and astrophysics.

Numerical techniques may be classified as basic, advanced, and cutting edge.
On the whole, this text covers only fundamental techniques; to work effectively
with advanced numerical methods requires that the user first understand the
basic algorithms. The discussion in the “Beyond This Chapter” section at the
end of each chapter guides the reader to advanced algorithms and indicates
when it is appropriate to use them. Unfortunately, the cutting edge moves so
quickly that any attempt to summarize the latest algorithms would quickly be
out of date.

The material in this text may be arranged in various ways to suit anything
from a 10-week, upper-division class to a full-semester, graduate course. Most
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vi PREFACE

chapters include optional sections that may be omitted without loss of conti-
nuity. Furthermore, entire chapters may be skipped; chapter interdependencies
are indicated in the flow chart.

Dashed lines indicate chapters
linked only by optional sections

I have tried to present the algorithms in a clear, universal form that would
allow the reader to easily implement them in any language. The programs are
given in outline form in the main text with MATLAB and C++ listings in the
appendices. In my classes, the students are allowed to use any language, yet
I find that most end up using MATLAB. Its plotting utilities are particularly
good—all the graphical results in the book were generated directly from the
MATLAB programs. Advanced programmers (and students wishing to improve
this skill) prefer using C++. FORTRAN versions of the programs, along with
the MATLAB and C++ source code, are available online from Prentice Hall.

The over 250 exercises should be regarded as an essential part of the text.
The time needed to do a problem ranges from 30 minutes to 2 days; in my
classes, I assign about five exercises per week. Each exercise is labeled as:

[Pencil] can be solved with pencil and paper.

[Computer]  requires using the computer.

[MATLAB] best solved using MATLAB.

[C++] best solved using C++.
While some texts emphasize month-long projects, I find that shorter exercises
allow the class to move at a brisker pace, covering a wider variety of topics.
Some instructors may wish to give one or two longer assignments, and many of
the exercises may be expanded into such projects.

Readers familiar with the first edition will notice the following changes: C++
versions of the programs have been added, along with a new section (1.3) sum-
marizing the language. The MATLAB programs have been updated to version
5. The discussion of derivatives has been moved from Chapter 1 to Chapter 2.
A new section (6.3) has been added to Chapter 6. The discussion of hyperbolic
partial differential equations has been collected into a new Chapter 7.

I wish to thank the people in my department, especially D. Strandburg,
P. Hamill, A. Tucker, and J. Becker, for their strong support; my students and
teaching assistants, J. Stroh, S. Moon, and D. Olson, who braved the rough
waters of the early drafts; the National Science Foundation for its support of
the computational physics program at San Jose State University; my editors at
Prentice Hall and the technical staff of The MathWorks Inc. for their assistance;
the National Oceanic and Atmospheric Administration Climate Monitoring and
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Diagnostics Laboratory for the CO, data used in Chapter 5. In addition, I
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appreciate the comments of the following reviewers: David A. Boness, Seattle
University; Wolfgang Christian, Davidson College; David M. Cook, Lawrence
University; Harvey Gould, Clark University; Cleve Moler, The MathWorks, Inc;
Cecile Penland, University of Colorado, Boulder; and Ross L. Spencer, Brigham
Young University. Finally, I owe a special debt of gratitude to my entire family
for their moral support as I wrote this book.

Alejandro L. Garcia

i
Dedzicated to
Josefina Ovies Garcia
and
Miriam Gonzdlez Lopez

The programs in this book have been included for their instructional value. Although
every effort has been made to ensure that they are error free, neither the author nor
the publisher shall be held responsible or liable for any damage resulting in connection
with or arising from the use of any of the programs in this book.
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Chapter 1

Preliminaries

This chapter has no physics; to use the computer to do physics, one must first
know how to use it to do math. The book presents algorithms in their general
form, but when we sit down at the computer we have to give it instructions
that it understands. Sections 1.2 and 1.3 present a synopsis of the MATLAB
and C++ programming languages, ang some simple programs are developed in
Section 1.4. The chapter concludes with a discussion of the effect of hardware
limitations (e.g., round-off errors) on mathematical calculations.

1.1 PROGRAMMING

General Thoughts

Before we get started, let me warn you that this book does not teach pro-
gramming. Presumably, you have already learned a programming language (it
doesn’t really matter which one) and have had some practice in writing pro-
grams. This book covers numerical algorithms, specifically those that are most
useful in physics. The style of presentation is informal. Instead of rigorously
deriving all the details of all possible algorithms, I'll cover only the essential
points and stress the practical methods.

If you’ve had a math course in numerical analysis, you may see some old
friends (such as Romberg integration). This book emphasizes the application
of such methods to physics problems. You will also learn some specialized
techniques generally not presented in a mathematics course. If you have not
had numerical analysis, don’t worry. The book is organized assuming no prior
knowledge of numerical methods.

In your earlier programming course I hope you learned about good program-
ming style. I try to use what I consider good style in the programs, but everyone
has personal preferences. The point of good style is to make your life easier by
organizing and structuring your program development. Many programs in this
book sacrifice efficiency for the sake of clarity. After you understand how a
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program works, you should make it a regular exercise to improve it. However.
always be sure to check your improved version with the original.

Most of the exercises in this book involve programming projects. In the first
few chapters, many exercises require only that you modify an existing program.
In the later chapters you are asked to write more and more of your own code.
The exercises are purposely organized in this fashion to allow you to come
up to speed on whatever computer system you choose to use. Unfortunately.
computational physics is often like experimental work in the following regard:
Debugging and testing is a slow, tedious, but necessary task similar to aligning
optics or fixing vacuum leaks.

Programming Languages

In writing this book, one of the most difficult decisions I had to make was choos-
ing a language. The obvious choices were Basic, FORTRAN, MATLAB, C++.
and Java. I also considered symbolic manipulators such as Maple and Math-
ematica. When the first edition of this book appeared, there were significant
differences among these choices. Some were more powerful, but difficult to use:
others had better graphics, but were not portable across computing platforms.
etc. Since that time, advances in software engineering have diminished the de-
ficiencies (and in many ways the distinctiveness) of these languages, making
the choice of language for the second edition even more difficult. With my edi-
tor’s assistance, we put the question to students and instructors using the first
edition, and their choices were MATLAB and C++.*

MATLAB is the language that I eﬁcourage my students to use in their course
work. Although you may not be familiar with MATLAB, it is widely used in
both academia and industry. It is especially popular in the engineering commu-
nity and with applied mathematicians. MATLAB is very portable; it runs on
Windows PCs, Macintoshes, and Unix workstations.

MATLAB is an interpreted language with excellent scientific libraries. Be-
cause it is an interpreted language, it is easy to use interactively, while the
compiled libraries improve its performance. Being an interpreted language also
makes MATLAB very clean. Many details (such as dimensioning matrices) are
handled automatically. MATLAB has very good graphics facilities, including
high-level routines (e.g., contour and surface plots). If you are comfortable us-
ing Basic, FORTRAN, or symbolic manipulators, you should have no trouble
programming in MATLAB.

C++ is a rich, elegant, and powerful programming language. Most of the
applications on your computer were probably written in C++. Arguably, FOR-
TRAN remains the dominant language in the physics community, but C++ is
the lingua franca of engineering. For these reasons many students are eager to
learn this object-oriented language. C++ is difficult to master, but knowing
the basics will suffice for programming the algorithms in this book. If you have
programming experience with C or Java, you will probably enjoy using C++.

*FORTRAN versions of the programs in this book are also available online.
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1.2 BASIC ELEMENTS OF MATLAB

This section summarizes the basic elements of MATLAB. Advanced features are
introduced in later chapters as we need them. The MATLAB manuals include
several tutorial chapters, along with a complete reference to the language. If
you don’t have a copy of the manual at hand, most of it is available from the
built-in help system. For other MATLAB tutorials, see the texts by Etter [44]
and by Hanselman and Littlefield [70].

Variables

The fundamental data type in MATLAB is the matrix (MATLAB is an acronym
for MATrix LABoratory). A scalar is a 1 x 1 matrix, a row vectorisa 1 x N
matrix, and a column vector is an NV x 1 matrix. Variables are not declared
explicitly; MATLAB just dimensions them as they are used. For example, take
the scalars z and y, the vectors a and b, and the matrices C, D, and E, and
give them the values

1
r=3 y=-2 a=|2|; b=[0 3 —4];
i 3
1 0 1 01 1 1 7
C=|(01 -1|; D=2 3 -1|; E=|0 -1 (1.1)
1 2 0 00 1 r =1

In MATLAB these variables would be set by the assignment statements

X = 3; % These are some simple assignments
y =2

a=[1; 2; 3]; % Column vector a; Row vector b
b= [0 3 -4];

C=[101; 01-1; 1 20]; % Matrices
D=[011; 23 -1; 0 0 1];

E = [1pi; 0 -1; x sqrt(-1)]; % In MATLAB, pi = 3.14...

Variable names in MATLAB, as in most languages, must start with a letter but
can be composed of any combination of letters, numbers, and underscores (e.g.,
mass, mass_of particle, MassOfParticle2). Anything following a percent
sign is considered a comment in MATLAB.

The semicolon at the end of each assignment marks the end of the statement;
you can put multiple statements on a line by separating them with semicolons.
If this semicolon is omitted, the statement is assumed to end at the end of
the line, and the value assigned is displayed on the screen (sometimes useful but
more often annoying). Notice that rows in a matrix are separated by semicolons.

Two handy MATLAB functions for creating matrices are zeros and ones.
The statement A=zeros(M,N) sets A to be an M x N matrix, with all elements
equal to zero. The ones function works in the same fashion, but creates matrices
filled with ones.
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Mathematics

The basic arithmetic operations are defined in the natural manner. For example,
the MATLAB statements

Z=X-7; % Some basic operations
t =Db *x a;
F =C+ D;
G =C x E;

assign the values

11 2 4 T+
z=5; t=-6; F=]2 4 -2 |; G=| -3 —-1—1 (1.2)
1 2 1 1 ™—2

The power operator is ~, thus 23 is 22 = 8. Other mathematical functions are
available from MATLAB’s large collection of built-in functions (Table 1.1).

MATLAB performs matrix multiplication; thus in the example above, G;; =
> CixEyj. Notice that bxa is just the dot product of these vectors. MATLAB
will balk if you try to do a matrix operation when the dimensions don’t match
(e.g., it will not compute C+E). For matrices, division is implemented by using
Gaussian elimination (discussed in Chapter 4). :

Sometimes we want to perform operations element by element, so MATLAB

defines the operators .* ./ and .~. Here are some examples of these array
operations:

H=C .x D; % These operatibns are performed

J=E ." x; % element-by-element

In this case Hi,j = Ci,jDi,j and Ji,j = (Ei’j)z, thus

00 1 1 a8
H={03 1|; J=| 0 -1 (1.3)
00 0 27 —i

Individual elements of a matrix may be addressed by using their indices. For
example, J(1,2) equals 73 and J(3,1) equals 27. Similarly, for vectors, b(3)
(or b(1,3)) equals —4. Notice that matrix indices start at 1 and not 0.

Matrix B is the transpose of matrix A if A;; = Bj;, that is, the rows and
columns are exchanged. The Hermitian conjugate of a matrix is the transpose
of its complex conjugate. In MATLAB

K=17J; % Hermitian conjugate
L=J.7; % Transpose

give the values
1 0 27 1 0 27
K= [ -1 i ] L= [ -1 —i } (1.4)

The Hermitian conjugate of J is K, while L is the transpose of J.
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Table 1.1: Selected MATLAB mathematical functions.

abs(x) Absolute value or complex magnitude
norm(x) Magnitude of a vector
sqrt(x) Square root
sin(x), cos(x) Sine and cosine
tan(x) Tangent
atan2(y,x) Arc tangent of y/x in [0, 27]
exp(x) Exponential
log(x), logl0(x) | Natural logarithm and base-10 logarithm
rem(x,y) Remainder (modulo) function (e.g., rem(10.3,4)=2.3)
floor(x) Round down to nearest integer (e.g., floor(3.2)=3)
ceil (x) Round up to nearest integer (e.g., ceil(3.2)=4)
rand (N) Uniformly distributed random numbers from
the interval [0, 1). Returns N x N matrix.
randn (N) Normal (Gaussian) distributed random numbers
(zero mean, unit variance). Returns N x N matrix.

Loops and Conditionals

Repeated operations are performed by using loops. Here is an example of a for
loop in MATLAB:

for i=1:5 % Your basic loop; i goes from 1 to 5
p(i) = i72;
end % This is the end of the loop

This loop assigns the valuep = [1 4 9 16 25]. The body of the for loop (i.e.,
the set of statements executed in the loop) is terminated by the end statement.
Notice that p is created as a row vector. If we wanted it to be a column vector,
we could build it as

for i=1:5 % Your basic loop; i goes from 1 to 5
p(i,1) = 1i"2; % p is a column vector

end % This is the end of the loop

or

for i=1:5 % Your basic loop; i goes from 1 to 5
p(i) = i72;

end % This is the end of the loop

P=p.; % Transpose p into a column vector

using the transpose operator.
In a for loop, the default step is +1, but it is possible to use a different
increment. For example, the loop
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for i=1:2:5 % Loop over odd values of i
q(i) = i;
q(i+1) =

end

"l;

assigns the valuesq = [1 -1 3 -3 5 -5].
MATLAB also has while loops; here is a simple example:

while( x > 1)
x = x/2;
end

A while command executes the statements in the body of the loop while the
loop condition is true. If z = 5 before the loop, then z will equal g when the
loop completes. The break statement can be used to terminate for loops or
while loops.

Here are some examples of how conditionals are implemented; you see that
it is quite standard.

if( x >5) % A simple conditional

z = 2z-1; '

y = MaxHeight; % Body of this conditional has two statements
end

if( x >= x_min & x <= x_max ) % A more complicated conditional
status = 1; \

else % This conditional uses else
status =

end

|
o

if(x==01] x == 1) % Another conditional using elseif

elseif( x < 0 & x "= -1) % Notice that elseif is ONE WORD
flag = -1;

else
flag = 0;

end

Notice that equals and not equals are == and ~=, respectively. Logical “and”
is & (ampersand), and logical “or” is | (vertical bar). = The end command
terminates both loops and conditionals.

Colon Operator

The colon operator, : , is one of MATLAB’s handiest tools.! Let’s consider a
few examples of its use. First, the for loop,

fFORTRAN 90 has a similar colon operator
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tau = 0.1;
for i=1:100

time(i) = tau * i; -
end

could be replaced with

tau = 0.1;
i=1:100;
time = tau * 1i;

In the latter, a vector i=[1 2 ...100] is created. We may further abbreviate
this to

tau = 0.1;
time = tau * (1:100);

In all three cases, the vector time=[0.1 0.2 ...10.0] is created.
The colon operator is also useful for looping over rows or columns of a matrix.
For example, the loop

[M,N] = size(A); % Find dim?nsions of A
for i=1:M

first(i) = A(i,1);

last(i) = A(i,N);
end

copies the first and last columns of matrix A into the vectors first and last.
The above can be replaced with

[M,N] = size(A); Y% Find dimensions of A
first = A(:,1);
last = A(:,N);

Not only does using the colon operator abbreviate our code, but it also makes
it run faster. The program becomes more efficient because we are explicitly
executing a vector operation instead of performing an element-by-element cal-
culation.

Input, Output, and Graphics

MATLAB has various types of input and output facilities. The input command
prints a prompt to the screen and accepts input from the keyboard. Here is a
simple example of its use:

x = input (’Enter the value of x: ’);

In this example, you can enter a scalar, a matrix, or any valid MATLAB ex-
pression.

The disp command may be used to display the value of a variable or to
print a string of text:
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Table 1.2: Selected MATLAB graphics functions.

plot(x,y) Plot vector y versus vector x
loglog(x,y), semilogx(x,y), Plot vector y versus vector x
semilogy(x,y) using log or semilog scales

polar(theta,rho) Polar plot

contour(z) Contour plot of matrix z

mesh (z) 3-D wire-mesh plot of matrix z

title(Ptext’), Write a title on a plot

xlabel(’text’), ylabel(’text’) | Write axis labels on a plot
L1:>rin1: Print graphics

M=1[1, 2, 3; 4, 5, 6; 7, 8, 9];
disp(’The value of M is ’);
disp(M);

produces the output

The value of M is

1 2 3
4 5 6
7 8 9

3 s )
Formatted output is also available with the fprintf command,
fprintf (’The values of x and y are %g and %g meters \n’,x,y)

The values of the variables x and y are displayed in place of the %g’s. The \n at
the end of the text string indicates a carriage return (new line). The MATLAB
commands load and save can be used to read and write data files.

MATLAB has various graphics commands for creating zy plots, contour
plots, and three-dimensional wire-mesh plots. Table 1.2 gives a list of a few of
the basic graphics commands.

MATLAB Session

When you first enter the MATLAB environment, you are at the command level
as indicated by the >> prompt (in the regular edition) or the EDU>> prompt (in
the student edition). From the command line you can enter individual MATLAB
commands. To end your MATLAB session, type quit or exit.

For programming, it is more convenient to enter a set of commands to be
executed in a file. In the MATLAB terminology such a script of commands is
called an M-file. Our programs and functions will all be M-files. You run an
M-file by invoking its name (the name of the file) on the command line. Before
running a program you need to tell MATLAB where to look for your M-files,
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f(x) = exp(—x/4)*sin(x) f(x) = exp(-x/4)*sin(x)
1 9 . .
0.8 0.8
0.6 0.6
= 04 = 0.4 ‘; exp(-x/4)"
T 02 T o2
0 ol
-0.2
|
0% 5 10 15 20
d) b3
o f(x) = exp(—x)*sin(x)~
10
=107° i
107" !
0 5 10 15
( ) X d) 270

Figure 1.1: Samples of MATLAB plotting.

that is, the directory where your files are located. MATLAB searches for M-files
in all locations specified in a list called the “path.” Use the path command or
the “Set path...” menu item to add your directories to MATLAB'’s path.

After MATLAB executes the commands in the M-file, it returns control to
the command line. You can then enter individual commands (for example, to
display the values of your variables). The interactive help may be used from
the command line. For example,

EDU>> help bessel

tells you about MATLAB’s Bessel function routines. You can also get help on
special characters (e.g., try help &).

EXERCISES

(Recommended exercises indicated by boldface numbers)

1. For the matrix A=[1 2; 3 4], use compute MATLAB to find: (a) AxA; (b) A.*A;
(c) A~2; (d) A.72; (e) A/A; (f) A./A. [MATLAB]

2.  Given the vectors x = [1 2 3... 10] and y = [1 4 9...100], plot them in
MATLAB using: (a) plot(x,y); (b) plot(x,y,’+’); (¢) plot(x,y,’=’,x,y,’+’); (d)
plot(x,y,’-?, x(1:2:10), y(1:2:10), *+’); (e) semilogy (x,y); (f) loglog(x,y, +’).
[MATLAB]

3. Reproduce the plots shown in Figure 1.1. Try to be as accurate as possible in your
reconstruction. [MATLAB]



