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Preface

Nonlinear science is a very broad domain, with its feet in mathematics,
physics, chemistry, biology, medicine as well as in less exact sciences such
as economics and sociology. Nineteenth century science was mostly linear
and the progress towards an understanding of the diverse behaviour of non-
linear systems is among the most important general scientific advances of the
twentieth century.

The lectures contained in this book took place at two summer schools,
the INLN Summer Schools on Nonlinear Phenomena, in June 1998 and June
1999. The Institut Non Linéaire de Nice (INLN) is a pluridisciplinary institute
interested in many aspects of nonlinear science, and the principal purpose of
this ongoing series of summer schools is to introduce doctoral students, either
from the INLN or form other institutions, to a range of topics that are outside
of their own domain of research. The eight courses represented by these
lecture notes therefore cover a broad area, describing analytic, geometric and
experimental approaches to subjects as diverse as wound-healing, turbulence,
elasticity, classical mechanics, semi-classical quantum theory, water waves and
trapping atoms. It is hoped that the publication of these notes will be useful
to others in the field(s) of nonlinear science.

We would like to take this opportunity, as organizers of the two sum-
mer schools, to thank the Fondation Nicolas-Claude Fabri de Peiresc, which
hosts our stay in the beautiful village of Peyresq in the French Alps, and in
particular the president Mady Smets, for providing a wonderfully relaxed at-
mosphere, allowing the participants and lecturers to interact easily both on
scientific and personal levels.

We would also like to thank the local Direction Régionale du CNRS, for
partially funding these summer schools.

Robin Kaiser
James Montaldi

Valbonne, 2000
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ELASTICITY AND GEOMETRY

BASILE AUDOLY
YVES POMEAU
Laboratoire de Physique Statistique de I’Ecole Normale Supérieure

We outline the general principles of thin plate elasticity, by emphasizing their
connection with the classical results of differential geometry. The relevant FvK
equation, can be solved in some specific cases, even though they are strongly and
definitely nonlinear. We present two types of solutions. The first one concerns the
contact of a spherical shell on a flat plane at increasing pressing forces, the second
one is about the buckling of a thin film under pressure on a flat substrate, where
we explain the observed “telephone-cord” pattern of delamination.

1 Introduction

This paper follows from a set of lectures by the two authors given in the beau-
tiful setting of the Rencontres de Peyresq, in the high country, north of Nice
in late Spring 1999. Those lectures were devoted to the exposition of some re-
cent results in thin plate elasticity. This venerable field of classical mechanics
is witnessing a renewal of interest because in parts of the new attraction of
physicists and applied mathematician for everything linking classical geome-
try and observations made in everyday life. Those lectures were focused first
on the general principles of thin plate elasticity, emphasizing as much as we
have could their connection with the beautiful results of classical differential
geometry. Below, we present a rather detailed derivation of Gauss Theorema
egregium, stating the condition under which two surfaces can be mapped on
each other without changing the curvilinear distances. Although this is of-
ten presented as obvious, the connection between this Theorema egregium
and the laws of elasticity of thin plates is not so simple. Hopefully, we make
this clearer in our derivation of the equations of Féppl-von Karman for thin
plates. Later, we use those equations to analyze two physical problems. The
first one concerns the way a spherical shell deforms when pressed on a plane,
as when a tennis ball bounces on a racket. We show that two regimes can
be observed, depending on the strength of the force. At low forces, the ball
makes contact on a flat disc. When this force gets bigger, the ball inverts itself
on a cap, and the contact is limited now to the circular ridge in between the
inverted and the non inverted part. The details of the geometry of the ridge
are deduced from an analysis of the elasticity equations. Finally, we discuss,
again by using the same elasticity equations, the problem of buckling of a
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delaminated film. As it occurs quite often, a film coating some bulk material
is under compression because of the way it has been deposited. This film may
relax the compression by buckling out of the surface of the bulk material. In
many instances a very specific pattern for the buckled film is observed, the
so-called telephon cord delamination. We show that this may be explained as
a result of a secondary bifurcation of a tunnel like structure of delaminated
film, the Euler column.

2 Differential geometry of 2D manifolds

The equations for the elasticity of thin plates (FvK equations later) were de-
rived at the beginning of the twentieth century by Foppl and they are notorious
for their complex nonlinear structure. Only recently various investigations put
in evidence the possibility of getting explicit solutions in various limits that
may be put globally under the heading of large deformations. Actually, those
solutions rely heavily on the connection between the FvK equations and the
underlying geometry. One central question in this geometry of surfaces, closely
linked to elasticity problems, is to find the conditions for a given surface to be
isometrically deformable. By this, we mean a deformation leaving unchanged
the (intrinsic) distances measured along the surface. If one thinks of a piece
of paper this intrinsic distance is just the length of a line drawn between two
points on the paper. This length remains the same when the paper is rolled
in one way or another, but without tearing, whence the name “intrinsic”. Al-
though the definition of this intrinsic length is relatively straightforward in
the present case, it becomes rapidly far more subtle when higher dimensions
spaces are considered, and even for non planar 2D surfaces (like the surface
of a sphere for instance). Riemannian geometry is the geometry of surfaces
(and their generalization to higher dimensions, the so-called manifolds) such
that the distances are invariant, independent on the coordinates chosen on
the surface itself. That this is a crucial question in elasticity theory is evi-
dent when noticing that elastic energy precisely accounts for the amount of
stretching occured by the material under the deformation. This stretching is
measured by how much the distances between material points vary. In the
present section, we consider the geometrical problem only, and we shall deal
in a rather casual way with deep results of differential geometry related to
this question of deformation of surfaces. Far more elaborate presentations of
this topic (necessary anyway when dealing with manifolds of dimension higher
than 2) can be found in [1].

The problem we shall look at is the following one: under what conditions
is it possible to find a one-to-one map between a plane and a surface given
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by a Cartesian equation z = Z(z,y), without changing the lengths along the
surface? Later, we shall also examine the existence of an isometric, one-to-
one mapping between two given surfaces. We are looking for a local map of a
point of coordinate (z,y) in the horizontal plane to the point of coordinates
z =z +ulz,y), v = y+v(z,y), 2 = Z(z,y), that is situated on the
surface. The functions u(z,y) and v(z,y) define “practically” the mapping
under consideration. The constraint (imposed on u and v) is that the length
element along the surface is the same as the length element on the plane, that
is that

ds'? = dz'? + dy"? + dz"? = ds? = dz? + dy?.

The orientation of the tangent plane of the surface at the origin (z,y) = (0,0)
can be chosen arbitrarily with the help of a rigid-body rotation. We will
therefore assume that it is horizontal. Then, the mapping is close to the
identity near the origin. The Taylor expansion of Z(z,y) is quadratic in z
and y near the origin, and we expect u and v to be small (actually, u and v
are generically cubic in z,y near z = y = 0). Expanding dz'? and dy'? at first
order in u and v, and at second order in Z (see explanation below), one gets:

47 = dla-+ um V) + -+ (o) + dZa)
Ou 9

=da:2(1+2—+(—) ) + dy? (1+23_+(_)) (1)
Ou Ov 0Z0Z

Now the condition of invariance of the length element under the mapping
becomes the condition that ds’? is the same quadratic form as ds?, which
yields three conditions, one for the coefficient of dz? to be one, another for
the coefficient of dy? to be one too, and the last one for the coefficient of the
cross term dzdy to vanish:

2 a2y =0 @
@ ‘(aZ>2 3)
and a—u-+-@+a—za—z=0. (4)

8y Oz Oz Oy

As we aim at eliminating u and v, there is one more condition than the number
of unknown functions (three versus two), and one condition has to be satisfied
for the existence of solutions of (2,3,4). This is to be imposed to the function
Z(z,y), a data in the problem. It is obtained by deriving the first equation
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twice with respect to y, the second one twice with respect to z and the last
one once with respect to £ and once with respect to y. Subtracting now the
last result from the sum of the first two, the u’s and v’s cancel out and there
remains an equation for Z only:

2 2 2 2
BZBZ_(62> -0 )

0z? Oy? Ozdy

This has a simple geometrical interpretation. Let us write Z(z,y) in the
coordinate system diagonalizing its Taylor expansion near z =y = 0:
22 y?
Z " O — —_—
@9~ 25 + 28

where R, are the so-called principal radii of curvature of the surface at
z =y = 0. Therefore, the equation (5) amounts to 77~ R = 0, or equivalently
to that at least one of the radius of curvature is infinite. Surfaces such that

this holds true everywhere are called developable. When this condition is
3

verified, integration of (2,3) u(z,y) ~ —6%:; and v(z,y) =~ ELRT

It is a straightforward exercise now to get by the same met:hod the exis-
tence condition of an isometry for two smooth surfaces of Cartesian equations
z = Zy(z,y) and z = Zy(z,y). One can take those two surfaces as tangent
to the horizontal plane at £ = y = 0, then redo the same calculation as be-
fore, but by imposing that the length on the two surfaces remain the same
under two mappings. Those mapping depend on two functions u, (z,y) and
vab(,y), and are mappings from the plane to surfaces a and b, such that
To = T+ ua(2,Y), Yo =¥ +va(z,y) and z; = Zs(z;,y;) and a similar set
with the subscript b instead of a. Now one imposes that the two length el-
ements (dz})? + (dy,)? + (dZ.)? and (dz})? + (dy;)? + (dZ})?, are the same
quadratic form in dz and dy, which yields:

Oou, 1,02, 2 _ Oup 1,07,

5z |2 am)—az 2(8:1:)

v, +l 824 _ Ovy 1(6Z¢,)2

Oy 2 Oy By 2 Oy
%+3va+6Z62_%+% 0Zy 0Zy
Oy oz Oy 8y Oz Or Oy’

and

Because of the obvious similarity of these equations with the one of the pre-
vious case, one may use the same method to get rid of the functions u,  and
Ua,b- One gets at the end that the Gaussian curvatures of the surfaces a and
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b have to be the same:

8°Z. 8°Za ya‘ﬂ_&a%m_(ﬁmy
0z2 Oy? 0zdy) ~  0z? Oy? 0zby /)

(6)

This is the so-called Theorema egregium of Gauss (meaning approximately
“outstanding”, or “out of the crowd” theorem). This theorem is sometimes
said as showing that the Gaussian curvature is a bending invariant: suppose
that one can deform the surface isometrically (“bend it”), then its Gaussian
curvature must remain the same at every point. This property is obviously a
constraint on isometric deformations, but it is still in general a difficult ques-
tion to know if non trivial isometries exist for a given surface. For instance,
a plane or a cylinder are deformable surfaces, but not a sphere, nor even a
convex surface (when the edge is attached).

In the coming two subsections, we shall expose two questions of differential
geometry, the first one having to do with some properties of the developable
surfaces, something that will be useful later on for the elasticity of thin plates,
the next one will have a more mathematical bent and aims at showing an
example of application of the ideas of differential geometry in a well defined
case, the so-called Poincaré half-plane.

2.1 Developable surfaces

By definition, such a surface may be mapped on a plane without stretching,
and it is C? smooth (an important assumption). Let us state first the Theo-
rema egregium in its general form (actually we stated it in the case of almost
horizontal surfaces). Its extension is almost trivial, because it only requires to
write the Gaussian curvature in an arbitrary system of coordinates. This can
be done in a number of ways, and the final result is that the product of the
principal curvature (or inverse of the principal radius of curvature) is equal to

1 930z (Zzy
Gm’ = = z Y z0Y , 7
@Y= 5x 1+ (%) + (%) @)

which reduces to the left hand side of (5) when the tangent plane is horizontal.
Therefore the algebraic condition that the Gaussian curvature vanishes is
always

#20°2 _(0°Z\* _
0z2 9y? ozdy) ~—
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The algebra will be made simpler later on with the notation

0*2, 0%z, 0°2,0°Z, 022, 0%,

[Zava]: 9z By? + 0z2 0Oy? a Ozdy azay’

so that
[Z, 2]
21+ (D)7 + (2)?)

G(z,y) =

A classical problem, called the Monge-Ampere equation amounts to find
the unknown function(s) ¢ Z(z,y) such that G(z, y) is prescribed in a bounded
domain for instance. In the case of zero curvature, the Monge-Ampere equa-
tion G(z,y) = 0 has an interesting general solution. Consider a one parameter
family of planes of Cartesian equation:

((z,yls) = a(s) + b(s)z + c(s)y,

where a(s), b(s) and c(s) are smooth arbitrary functions of a parameter s.
The envelop of this family of planes is the surface tangent everywhere to one
plane in the family. As a first result, we show that this surface is tangent to
those planes along straight lines (the generatrices). Consider two planes with
neighboring indices, s and s + s, ds small. Those two planes cross along a
straight line, intersection of planes of equation

z = a(s) + b(s)z + ¢(s)y,
and z = a(s+ds) + b(s + ds)x + c(s + 6s)y.
Take the difference between those two equations and divide by 4s, then

one obtains that, in the limit of a vanishing §s, the limit line of intersection
of the two planes has Cartesian equation:

z = a(s) + b(s)z + c(s)y, (8)
da db dc
and E-{-a—gl"i'ay = 0. 9)

These are two Cartesian equations of planes, showing that the envelope of the
family of planes must include generically the straight lines whose equation is
obtained in this way. It remains to show that the surface so generated has zero
Gaussian curvature. This is shown directly, by computing G(z,y) as given
by (7). The calculation is not straightforward, and so we shall decompose

%There might be more than one solution: think of the case of zero Gaussian curvature.



