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Preface

Regression methods have been an integral part of time series analysis for a long
time, dating back at least one hundred years to the work of Schuster (1898) [379].
Schuster’s work on sinusoidal regression was applied in the estimation of "hidden
periodicities” and led to the invention of the periodogram. Structural regression
models for time series have been around for many years and have figured prominently
in the econometrics and business literature. Treated rigorously by Anderson (1971)
[20], and Fuller (1996) [161] among others, these structural models have been used
for years in forecasting and decomposition of time series into “trend”, “seasonal”’, and
“irregular” components. Another distinctive example is the class of autoregressive
integrated moving average models that came to be associated with Box and Jenkins
(1976) [61] but has its roots in the pioneering work of E.E. Slutski and G.U. Yule in
the 1920s, and of H.O. Wold in the 1930s. Most of the aforementioned work deals
with linear models for time series assuming continuous values. However, there are
many instances in practice where the data are not continuous and a linear model is
not appropriate. This points to the necessity for alternative modeling.

This book introduces the reader to relatively newer developments and somewhat
more diverse regression models and methods for time series analysis. It has been
written against the backdrop of a vast modern literature on regression methods for
time series and related topics as is apparent from the long list of references.

A relatively recent statistical development is the important class of models known
as generalized linear models (GLM) that was introduced by Nelder and Wedderburn
(1972) [336], and which provides under some conditions a unified regression theory
suitable for continuous, categorical, and count data. The theory of GLM was origi-
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nally intended for independent data, but it can be extended to dependent data under
various assumptions. In the first four chapters of this book the GLM methodology
is extended systematically to time series where the primary and covariate data are
both random and stochastically dependent. There are three notions which enable this
[152], [395]. The notion of an increasing sequence of histories relative to an observer,
the notion of partial likelihood introduced by Cox (1975) [105] and further elaborated
on by Wong (1986) [439], and the notion of martingale with respect to a sequence
of histories. The latter, under suitable conditions, is applied in asymptotic inference
including goodness of fit.

After a general introduction to time series that follow generalized linear models
in Chapter 1, Chapters 2, 3, and 4 specialize to regression models for binary, cate-
gorical, and count time series, respectively. Chapter 5 is an introduction to various
regression models developed during the last thirty years or so, particularly regression
models for integer valued time series including hidden Markov models. Chapter 6
summarizes classical and more recent results concerning state space models. The last
chapter, Chapter 7, presents a Bayesian approach to prediction and interpolation in
spatial data adapted to time series that may be short and/or observed irregularly. We
also describe a specially designed software for the implementation of the Bayesian
prediction method. A brief introduction to stationary processes can be found in the
Appendix. Throughout the book there are quite a few real data applications and
further results presented by means of problems and complements.

Parts of the book were taught at the University of Maryland to a mixed audience
of beginning and more advanced graduate students. Based on our experience, the
book should be accessible to anyone who is familiar with basic modern concepts of
statistical inference, corresponding roughly with the master’s degree level. A basic
course in applied stochastic processes consistent with the level of Parzen (1962) [343]
is helpful.

We are very grateful to V. De Oliveira, L. Fahrmeir, R. Gagnon, N.O. Jeffries,
C. Kedem, D.E.K. Martin, M. Nerlove, J. Picka, E. Russek-Cohen, T.J. Santner, and
others who read parts of the book and provided very helpful suggestions. Special
thanks are due to Amy Hendrickson of TeXnology Inc. for many useful IFTEX tips.
We would like to acknowledge with thanks the travel support from the University
of Cyprus and the grant support, over many years, from the National Aeronautics
and Space Administration (NASA). Finally we thank our families for their unlimited
support and patience throughout this project.

BENJAMIN KEDEM, College Park, Maryland
KONSTANTINOS FOKIANOS, Nicosia, Cyprus
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TIime Series Following
Generalized Linear Models

In ordinary linear regression, a most useful and much dealt with statistical tool, the
problem is to relate the mean response of a variable of interest to a set of explanatory
variables by means of a linear equation. In many cases this is done under the assump-
tion that the data are normal and independent. There are situations however, regarding
non-normal observations such as binary and count data, when ordinary linear regres-
sion leads to certain inconsistencies, some of which are resolved very elegantly and
successfully by generalized linear models. Emboldened by this success, we wish to
import ideas from generalized linear models in modeling time series data. The ques-
tion then is how to extend the generalized linear models methodology to time series
where the data are dependent and the covariates and perhaps even the auxiliary data
are time dependent and also random. As we shall see, by using partial likelihood we
can transport quite straightforwardly the main inferential features appropriate for in-
dependent data to time series, not necessarily stationary, following generalized linear
models. An essential component of this is that partial likelihood allows for temporal
or sequential conditional inference with respect to a filtration generated by all that is
known to the observer at the time of observation. This enables very flexible condi-
tional inference that can easily accommodate autoregressive components, functions
of past covariates, and all sorts of interactions among covariates.

In this chapter we provide the necessary background and an overview of gener-
alized linear models by discussing their theoretical underpinnings, having in mind
dependent time series data. Specifically, we define what we mean by time series
following generalized linear models, introduce the notion of partial likelihood, and
discuss in some detail the statistical properties—including large sample results—of the



2 TIME SERIES FOLLOWING GENERALIZED LINEAR MODELS

maximum partial likelihood estimator. Examples of special cases are presented at the
end of the chapter and in subsequent chapters.

1.1 PARTIAL LIKELIHOOD

The likelihood, defined as the joint distribution of the data as a function of the unknown
parameters, lies at the core of statistical theory and practice and its importance cannot
be exaggerated. When the data are independent or when the dependence in the data
is limited, the likelihood is readily available under appropriate assumptions on the
factors in terms of which the joint distribution is expressed. In practice, however,
things tend to be more complicated as the nature of dependence is not always known
or even understood and consequently the likelihood is not within an easy reach.
This gives the impetus for seeking suitable modifications usually by means of clever
conditioning. Partial likelihood is an example of such a modification.

To motivate partial likelihood, consider a time series {Y;}, ¢ = 1,..., N, with
a joint density fg(y1,...,yn) parametrized by a vector parameter 6. In addition,
suppose there is some auxiliary information Al known throughout the period of ob-
servation. Then the likelihood is a function of 8 defined by the equation

N
fe(yla' 7?JN|AI) = fa(leAI)er(yl l y17y2;"'ayt—1aAI)- (L.1)

t=2

When auxiliary information is not available or is not relevant, it can be dropped from
the equation as we shall do forthwith to simplify the notation to

N
fowr,---un) = fo(u) [ folwe | va,v2, - pe—1)- (1.2)

=2

The main difficulty with (1.2) is that quite generally, if no additional assumptions are
made, as the series size N increases so does the size of §. Hence, instead of getting
more and more information about a fixed set of parameters, we obtain information
but about an increasing number of parameters, a fact which raises consistency as well
as modeling problems. This is rectified when the conditional dependence in the data
is limited and the increased amount of information obtained by a growing time series
size concerns a fixed set of parameters.

Appropriate assumptions and modifications of the general likelihood (1.2) are
called for to accommodate dependent time series data. Helpful clues in the search for
a successful definition of “likelihood” can be obtained from Markovian time series,
and the notion of partial likelihood advanced by Cox [104], [105].

Markov dependence of some order typifies what we mean by conditional limited
dependence. As an example, suppose we observe a first order stationary Markov
process, {Y}, att = 1,..., N, and that fg(y1,...,yn) is the joint density of the
observations where 8 is a fixed vector parameter. Due to the Markov assumption the
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joint density can be factored as

N
fg(yl,---yyzv)=fg(y1)Hfg(y: | ye—1)- (L.3)

=2

Ignoring the first factor fg(y1), as it is independent of IV, inference regarding 6 can
be based on the product term in (1.3). This is an example of conditional likelihood
resulting from dependent observations expressed as a product of conditional densi-
ties. The factorization (1.3), without fg(y1), has some desirable properties worth
keeping in mind, such as the fact that the dimension of the factors, as well as that of
0, is fixed regardless of N, and that the derivative with respect to 6 of the logarithm
of (1.3) is a zero mean square integrable martingale (see [191].) The latter is useful
when studying the asymptotic properties of the resulting maximum likelihood esti-
mator. Important early references where the martingale property was recognized and
applied in statistical inference are [50] and [390]. In [50], a central limit theorem for
martingales was proved and applied in asymptotic large sample theory.

Next we turn to an idea due to Cox [105] who suggested using only a part of (1.2)
such as a factorization that consists only of the odd numbered conditional densities.
This suggests an inference based on partial likelihood. More precisely, consider an
occasion when a time series is observed jointly with some random time dependent co-
variates. Thus, suppose we observe a pair of jointly distributed time series, (X¢, Y7),
t=1,...,N,where {Y;} is a response series and { X} is a time dependent random
covariate. Employing the rules of conditional probability, as was done in (1.2) and
(1.1), the joint density of all the X, Y observations can be expressed as

N N
fg(xlay17axN7yN):f0(zl) |:Hf0($t |dt)] I:er(yl |ct):| ’ (14)
t=1

t=2

where d; = (y1,%1,...,Yt-1,%¢t—1) and ¢ = (y1,%1,...,Yt—1,T¢—1,2¢). The
second product on the right hand side of (1.4) constitutes a partial likelihood according
to [105] and can be used for inference. Clearly, there is information about 8 in the
first product as well, and a question arises as to what happens when this factor is
ignored. It turns out that under some reasonable conditions the loss of information
due to the ignored factor is small, and in exchange the remaining factor is a simplified
yet useful likelihood function. The adjective “partial” also refers to the fact that the
remaining factor does not specify the full joint distribution of the response and the
covariate data.

The previous discussion points to the potentially useful idea of forming certain
likelihood functions by taking products of conditional densities, where the densities
depend on a fixed parameter and where the formed products do not necessarily give
complete joint or full likelihood information. This motivates the following definition
of partial likelihood with respect to a nested sequence of conditioning histories.

Definition 1.1.1 Let 7;, t = 0,1,... be an increasing sequence of o-fields, Fo C
Fi1 CFy...,andlet Y], Y5, ... be a sequence of random variables on some common
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probability space such that Y; is F; measurable. Denote the density of Y;, given
Fi—1, by fi(y:;6), where @ € RP is a fixed parameter. The partial likelihood (PL)
function relative to 6, F;, and the data Y7, Y5, ..., Yy, is given by the product

N
PL(6;y1,...,yn) = [] filws; 0). (15)

t=1

According to Definition 1.1.1, the notion of partial likelihood generalizes both con-
cepts of likelihood and conditional likelihood. Indeed, partial likelihood simplifies
to ordinary likelihood when auxiliary information is absent and the data are indepen-
dent while it becomes a conditional likelihood if the covariate process is deterministic,
that is, known throughout the period of observation. Partial likelihood takes into ac-
count only what is known to the observer up to the time of actual observation, that
is, it allows for sequential conditional inference. Closely associated with this is the
martingale property alluded to earlier; it manifests itself in Section 1.4.2 on large
sample results for generalized linear models. Evidently, partial likelihood does not
require full knowledge of the joint distribution-that is, joint statistical dynamics—of
the response and the covariates. This enables conditional inference for a fairly large
class of “transition” or “transitional” non-Markovian processes where the response
depends on its past values and on past values of the covariates. See Remark 1.2.1 and
compare with [75], [123, Ch. 10].

The vector 8 that maximizes equation (1.5) is called the maximum partial likeli-
hood estimator (MPLE). Its theoretical properties, including consistency, asymptotic
normality, and efficiency, have been studied extensively in [439].

Definition 1.1.1 has been extended to continuous time stochastic processes in
connection with survival analysis in [392], [393]. Additional references that treat
theoretical properties of partial likelihood processes include [224] and [225]. Ram-
ifications of partial likelihood have been considered by several authors. The notion
of marginal partial likelihood was introduced in [174], and that of projected partial
likelihood for modeling longitudinal data with covariates subject to drop-out is stud-
ied in [333]. Other types of pseudo-likelihoods have been considered by a fairly large
number of authors of which we mention the pseudo-likelihood introduced in [45], [46]
for spatial data analysis, and the notion of empirical likelihood introduced in [341]
for nonparametric inference. See [183] for a general treatment of pseudo-likelihood
and [342, Ch. 4] for a survey of pseudo-likelihoods including profile and empirical
likelihoods.

1.2 GENERALIZED LINEAR MODELS AND TIME SERIES

Let {Y;} be a time series of interest, called the response, and with an eye toward
prediction, let

Zir = (Zi—1)15- - Z—1yp)"s



