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Preface J

This book is intended for students and others working in the field of economics
who want a relatively non-technical introduction to applied time series econo-
metrics and forecasting involving non-stationary data. The emphasis is on the
why and how, and as much as possible we confine technical material to boxes
or point to the relevant sources that provide more details. It is based on an
earlier book by one of the present authors entitled Using Cointegration Analysis
in Econometric Modelling (see Harris, 1995), but as well as updating the
material covered in the earlier book, there are two major additions involving
panel tests for unit roots and cointegration, and the modelling and forecasting
of financial time series.

We have tried to incorporate into this book as many of the latest tech-
niques in the area as possible and to provide as many examples as necessary to
illustrate them. To bhelp the reader, one of the major data sets used is supplied
in the Statistical Appendix, which also includes many of the key tables of
critical values used for various tests involving unit roots and cointegration.
There is also a website for the book (http://www.wiley.co.uk/harris) from
which can be retrieved various other data sets we have used, as well as econo-
metric code for implementing some of the more recent procedures covered in
the book.

We have no doubt made some mistakes in interpreting the literature, and
we would like to thank in advance those readers who might wish to point them
out to us. We would also like to acknowledge the help we have received from
those who have supplied us with their econometric programming code, data,
and guidance on the procedures they have published in articles and books.
Particular thanks are due to Peter Pedroni (for his generous offer of time in
amending and providing software programmes for Chapter 7), and Robert
Shiller for allowing us to use his Standard & Poor’s (S&P) Composite data
in Chapter 8. We would also like to thank Jean-Phillipe Peters for help with the
G@RCH 2.3 programme, also used in Chapter 8. Others who generously
provided software include Jorg Breitung, David Harvey, Robert Kunst and
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Johan Lyhagen. Of course, nobody but ourselves take responsibility for the
contents of this book.

We also thank Steve Hardman at Wiley, for his willingness to support this
project and his patience with seeing it to fruition. Finally, permission from the
various authors and copyright holders to reproduce the Statistical Tables is
gratefully acknowledged.
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1
Introduction and Overview

Since the mid-1980’s applied economists attempting to estimate time series
econometric models have been aware of certain difficulties that arise when
unit roots are present in the data. To ignore this fact and to proceed to estimate
a regression model containing non-stationary variables at best ignores impor-
tant information about the underlying (statistical and economic) processes
generating the data, and at worst leads to nonsensical (or spurious) results.
For this reason, it is incumbent on the applied researcher to test for the pres-
ence of unit roots and if they are present (and the evidence suggests that they
generally are) to use appropriate modelling procedures. De-trending is not
appropriate (Chapter 2) and simply differencing the data' to remove the
non-stationary (stochastic) trend is only part of the answer. While the use of
differenced variables will avoid the spurious regression problem, it will also
remove any long-run information. In modelling time series data we need to
retain this long-run information, but to ensure that it reflects the co-movement
of variables due to the underlying equilibrating tendencies of economic forces,
rather than those due to common, but unrelated, time trends in the data.

Modelling the long run when the variables are non-stationary is an ex-
panding area of econometrics (both theoretical and applied). It is still fairly
new in that while it is possible to find antecedents in the literature dating back
to, for example, the seminal work of Sargan (1964) on early forms of the error-
correction model, it was really only in 1986 (following the March special issue
of the Oxford Bulletin of Economics and Statistics) that cointegration became a
familiar term in the literature.” It is also a continually expanding area, as
witnessed by the number of articles that have been published since the mid-
1980s. There have been and continue to be major new developments.

I 'That is, converting x, to Ax,, where Ax;, = x; — x,_, will remove the non-stationary
trend from the variable (and if it does not, because the trend is increasing over time, then
x, will need to be differenced twice, etc.).

2Work on testing for unit roots developed a little earlier (e.g., the PhD work of Dickey,
1976 and Fuller, 1976).
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The purpose of this book is to present to the reader those techniques that
have generally gained most acceptance (including the latest developments sur-
rounding such techniques) and to present them in as non-technical a way as
possible while still retaining an understanding of what they are designed to do.
Those who want a more rigorous treatment to supplement the current text are
referred to Banerjee, Dolado, Galbraith and Hendry (1993) and Johansen
(1995a) in the first instance and then of course to the appropriate journals.
It is useful to begin by covering some introductory concepts, leaving a full
treatment of the standard econometric techniques relating to time series data
to other texts (see, for example, Hendry, 1995). This is followed by an overview
of the remainder of the book, providing a route map through the topics
covered starting with a simple discussion of long-run and short-run models
(Chapter 2) and then proceeding through to estimating these models using
multivariate techniques (Chapters 5 and 6). We then cover panel data tests
for unit roots and cointegration (Chapter 7) before concluding with an in-
depth look at modelling and forecasting financial time series (Chapter 8).

SOME INITIAL CONCEPTS

This section will review some of the most important concepts and ideas in time
series modelling, providing a reference point for later on in the book. A fuller
treatment is available in a standard text such as Harvey (1990). We begin with
the idea of a data-generating process (hereafter d.g.p.), in terms of autoregres-
sive and moving-average representations of dynamic processes. This will also
necessitate some discussion of the properties of the error term in a regression
model and statistical inferences based on the assumption that such residuals are
‘white noise’.

Data-generating Processes

As economists, we only have limited knowledge about the economic processes
that determine the observed data. Thus, while models involving such data are
formulated by economic theory and then tested using econometric techniques,
it has to be recognized that theory in itself is not enough. For instance, theory
may provide little evidence about the processes of adjustment, which variables
are exogenous and indeed which are irrelevant or constant for the particular
model under investigation (Hendry, Pagan and Sargan, 1984). A contrasting
approach is based on statistical theory, which involves trying to characterize
the statistical processes whereby the data were generated.

We begin with a very simple stationary univariate model observed over the
sequence of time ¢t =1,...,T:

Vi = pyi-1 + U lp| <1 } (1.1)

or (L—pL)y: = u,
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where L is the lag operator such that Ly, = y,_;. This statistical model states
that the variable y, is generated by its own past together with a disturbance (or
residual) term u,. The latter represents the influence of all other variables
excluded from the model, which are presumed to be random (or unpredictable)
such that u, has the following statistical properties: its expected value (or mean)
is zero [E{u,) = 0] fluctuations around this mean value are not growing or
declining over time (i.e., it has constant variance denoted E(u?) = o?); and it
is uncorrelated with its own past [E(w,u,_;) = 0]. Having «, in (1.1) allows y, to
also be treated as a random (stochastic) variable.?

This model can be described as a d.g.p., if the observed realization of y,
over time is simply one of an infinite number of possible outcomes, each
dependent on drawing a sequence of random numbers u, from an appropriate
(e.g., standard normal) distribution.? Despite the fact that in practice only a
single sequence of y, is observed, in theory any number of realizations is poss-
ible over the same time period. Statistical inferences with respect to this model
are now possible based on its underlying probability distribution.

The model given by equation (1.1) is described as a first-order autoregres-
sive (AR) model or more simply an AR(1) model. It is straightforward to
derive the statistical properties of a series generated by this model. First,
note that (1.1) can be rearranged as:

ye=[1/(1 = pL)]u; (1.2)

It can be shown that 1/(1 — pL) = (1 + pL+ p*L*> + L’ ...), and therefore
the AR(1) model (1.1) can be converted to an infinite order moving average of
the lagged disturbance terms:’

Yo = U+ pu +,02u,_2 + - (1.3)

Taking expectations gives E(y,) = 0 (since E(u,) = 0 for all ¢), thus the mean of
y:» when the d.g.p. is (1.1), is zero. The formula for the variance of y, is
var(y,) = E[{y, — E(»)}]>. Since in this case the mean of y, is zero, the
formula for the variance simplifies to £ (y,2 ). Using this gives:

E(y?) = E(pyi + uz)z
= E(PzJ’t{l) + E(uf) + 2pE(y,_1uy)
=p’E(y2 )+’ (1.4)

3 In contrast, y, would be a deterministic (or fixed) process if it were characterized as
¥; = py,—1, which, given an initial starting value of yg, results in y, being known with
complete certainty each time period. Note also that deterministic variables (such as an
intercept of time trend) can also be introduced into (1.1).

4 The standard normal distribution is of course appropriate in the sense that it has a
zero mean and constant variance and each observation in uncorrelated with any other.
5 This property is known as invertibility.
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Repeatedly substituting for E( y?,l) on the right-hand side of (1.4) leads to a
geometric series that converges to E(y?) = o2/(1 — p?).

The autocovariance of a time series is a measure of dependence between
observations. it is straightforward to derive the autocovariance for an AR(1)
process. Generally, the autocovariance is v, = E[(y; — p) (31— — p)] for k # 0,
where p represents the mean of y,. When y, is generated by (1.1), since
E(y,) =0, the autocovariance formula simplifies to E{(y,y,_r). Using this
formula, it can be shown that the kth autocovariance is given by:

w=pv k=12 (1.5)

The autocorrelation coefficient for a time series is a standardized measure of
the autocovariance restricted to lie between —1 and 1. The kth autocorrelation
is given by:

El(y —)(—e — )] _ %
E[(ye — )7 Yo

(1.6)

Thus the kth autocorrelation when y, is generated by (1.1) is given by pk. Note
that the autocovariances and autocorrelation coefficients discussed above are
population parameters. In practice, the sample equivalents of these amounts
are employed. In particular they are used when specifying time series models
for a particular data set and evaluating how appropriate those models are, as in
the Box—Jenkins procedure for time series analysis (Box and Jenkins, 1970).
These authors were the first to develop a structured approach to time series
modelling and forecasting. The Box—Jenkins approach recognizes the impor-
tance of using information on the autocovariances and autocorrelations of the
series to help identify the correct time series model to estimate, and when
evaluating the fitted disturbances from this model.

Another simple model that is popular in time series econometrics is the
AR(1) model with a constant:

Ye=0+pyi1 +u lp] < 1 (1.7)

Adding a constant to (1.1) allows y, to have a non-zero mean. Specifically, the
mean of y, when (1.7) is the d.g.p. is given by E(y,) = 6/(1 — p). To see this
note that (1.7) can be written as:

(1—pL)y, =6+u, (1.8)
so that

ye=[1/(1 — pL)|(6 + u,)
=(14+p+p>+-- )6+ (u + pu1 + pPthea + -+ ) (1.9)
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Since we are assuming that E(x,) = 0, the expected value of (1.9) simplifies to:
E(y)=+p+p"+--)6 (1.10)

which is a geometric series that converges to E(y,) = §/(1 — p). To calculate
the variance of y, when the d.g.p. is (1.7), it is easiest to work with the de-
meaned series x, = y, — u. We can then rewrite (1.7) as:

X[:px;_]+u[ (111)

It follows that var(y,) = E(x?), and that E(x?) = o?/(1 — p°). Therefore y,
generated by the AR(1) model with a constant has a mean of
E(y,) = 6/(1 — p) and a variance of var(y,) = ¢*/(1 — p?).

The simple time series model (1.1) can be extended to let y, depend on past
values up to a lag length of p:

Yi=pP1Yi-1 + P2Yr—2+ -+ ppYi—p + 1y (1.12)
or ALYy, = u, '

where A(L) is the polynomial lag operator 1 — pjL — p,L> — .-+ — pp,L”. The
d.g.p. in (1.12) is described as a pth-order AR model.® The mean, variance and

covariance of AR(p) processes when p > 1 can also be computed algebraically.
For example, for the AR(2) model with a constant:

Ye=0+p1yi1+ paye—z + w (1.13)

assuming p, + p; < 1 and that u, is defined as before, the mean of y, is
E(y,) =6/(1 — p, — p,) and the variance of y, is:’

(1 —p)o?
1+ p2)(1 = p1 — p2)(1 + p1 — p2)

An alternative to the AR model is to specify the dependence of y, on its own
past as a moving average (MA) process, such as the following first-order MA
model:

var(y,) = ( (1.14)

ye=u+bu 16 <1 (1.15)
or a model with past values up to a lag length of ¢:
Ve = U, + H]uf_] + -+ unt_q }

of  y,=B(L) (1.16)

where B(L) is the polynomial lag operator 1+ 6, L+ 6,L> + --- + 6,L%. In
practice, lower order MA models have been found to be more useful in econo-
metrics than higher order MA models, and it is straightforward to derive the
statistical properties of such models. For example, for the first-order MA
model (the MA(1) model) given by (1.15), the mean of y, is simply
E(y,) =0, while the variance of y, is var(y,) = (1 + 6?)o?. It turns out that,

¢ Hence, (1.1) was a first-order AR process.
" The importance of the assumption py + p; < 1 will become clear in the next chapter.
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for the MA(1) model, the first autocovariance is y; = 6o, but that higher
autocovariances are all equal to zero. Similarly, the first autocorrelation coeffi-
cient is p, = 6/(1 + #*), but higher autocorrelation coeflicients are all equal to
Zero.
Finally, it is possible to specify a mixed autoregressive moving average
(ARMA) model:
A(L)y, = B(L)u, (1.17)

which is the most flexible d.g.p. for a univariate series. Consider, for example,
the ARMAC(1, 1) model:

Vi = p1yi—1 + s + 011, |Pl‘ <1, ‘gll <1 (1-18)

As with the AR(1) model, note that the ARMAC(1, 1) model can be rewritten as
an infinite order MA process:

ye=({1+6,L)(1—p L) 'y

o0
=D wur (1.19)

=0
Since we are assuming that E(x,) = 0, it follows that E(y,) = 0. The variance

of y, is given by:
E(J’%) = E[(prye +u + Hlut—l)z]

= E(p3y% | + 2061y 11 + Ut + 0%ul ) (1.20)

Using the autocovariance notation, the variance of y, can be written:

Yo =p%70+2p10102+02+6%0'2 (1.21)
which can be rearranged as:
1+62+2p0
Yo = (—f—l—]dl—zpl—l)az (1.22)

The higher autocovariances can be obtained in a similar way, and it can be
shown that:

Y = p1o + 0107

(T
T2 = PN (1.24)

and v, = p1Yx_; for k > 2. The autocorrelation coefficients are given by:

7 _ (14 pbi)(o1 +6)

= 1.25
v  (1+62+2p6) (1-29)

pr =

and p; = p1pp_; for k > 2.
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So far the d.g.p. underlying the univariate time series y, contains no
economic information. That is, while it is valid to model y, as a statistical
process (cf. the Box—Jenkins approach), this is of little use if we are looking
to establish (causal) linkages between variables. Thus, (1.1) can be generalized
to include other variables (both stochastic, such as x,, and deterministic, such
as an intercept), for example:

Yo =00+ vX 0¥y + Uy (1.26)
Since x; is stochastic, let its underlying d.g.p. be given by:
x;=€&x1+¢ €<l and g ~IN(0,02) (1.27)3

If u, and ¢, are not correlated, we can state that E(u,e;) = 0 for all r and s, and
then it is possible to treat x, as if it were fixed for the purposes of estimating
(1.26). That is, x, is independent of u, (denoted E(x,u,) = 0) and we can treat it
as (strongly) exogenous in terms of (1.26) with x, being said to Granger-cause
v,. Equation (1.26) is called a conditional model in that y, is conditional on x,
(with x, determined by the marginal model given in (1.27)). Therefore, for
strong exogeneity to exist x, must not be Granger-caused by y,, and this
leads on to the concept of weak exogeneity.
Note, if (1.27) is reformulated as:

xr=E1x + &y + & (1.28)

then E{x,u,) = 0 is retained, but since past values of y, now determine x, the
latter can only be considered weakly exogenous in the conditional model
(1.26).°

Lastly, weak exogeneity is a necessary condition for super-exogeneity, but
the latter also requires that the conditional model is structurally invariant; that
is, changes in the distribution of the marginal model for x, (equation (1.27) or
(1.28)) do not affect the parameters in (1.26). In particular, if there are regime
shifts in x, then these must be invariant to («;,y,) in (1.26).

All three concepts of exogeneity will be tested later, but it is useful at this
point to provide a brief example of testing for super-exogeneity in order to
make the concept clearer.'® Assuming that known institutional (e.g., policy)

& Note that e, ~ IN(0, 02) states that the residual term is independently and normally
distributed with zero mean and constant variance o?. The fact that o? is multiplied by a
(not shown) value of 1 means that ¢, is not autocorrelated with its own past.

? That is, x, still causes y,, but not in the Granger sense, because of the lagged values of
y, determining x,. For a review of these concepts of weak and strong exogeneity,
together with their full properties, see Engle, Hendry and Richard (1983).

10This example is based on Hendry (1995, p. 537). Further discussion of super-
exogeneity can be found in Engle and Hendry (1993), Hendry (1995, p. 172) and
Favero (2001, p. 146).
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and historical shifts (shocks) can be identified that affected x,, it should be
possible to construct a dummy variable (e.g., POL,) that augments (1.28):

Xr = &1x-1 + §yi-1 + &POL + &4 (1.28%)

Assuming that the estimate of & is (highly) significant in determining x,, then
super-exogeneity can be tested by including POL, in the conditional model
(1.26), and if this dummy is significant then super-exogeneity is rejected.'’

The importance of these three concepts of exogeneity are discussed in
Favero (2001, p. 146): (1) if we are primarily interested in inference on the
(v, v0) parameters in (1.26), then if x, is weakly exogenous we only need to
estimate (1.26) and not also {1.28); (ii) if we wish to dynamically simulate y,
and x, is strongly exogenous, again we only need to estimate (1.26) and not also
(1.28); and (iii}) if the objective of modelling y, is for econometric policy evalu-
ation, we only need to estimate the conditional model (1.26) if x, has the
property of being super-exogenous. The latter is a necessary condition to
avoid the Lucas Critique (see Lucas, 1976). For example, suppose y, is a
policy variable of government (e.g., the money supply) and x, is the instrument
used to set its outcome (e.g., the interest rate), then x, must be super-exogenous
to avoid the Lucas Critique. Otherwise, setting x, would change the policy
model (the parameters of 1.26), and the policy outcome would not be what
the model (1.26) had predicted.'?

As with the univariate case, the d.g.p. denoted by (1.26) can be generalized
to obtain what is known as an autoregressive distributed lag (ADL) model:

A(L)y, = B(L)x; + (1.29)

where the polynomial lag operators A(L) and B(L) have already been
defined.!® Extending to the multivariate case is straightforward, replacing y,
and x, by vectors of variables, y, and x,.

The great strength of using an equation like (1.29) as the basis for econo-
metric modelling is that it provides a good first approximation to the
(unknown) d.g.p. Recall the above arguments that theory usually has little

I That is, its exclusion from (1.26) would alter the estimates of (a;, ). Note also that
the residuals &, from (1.28%) should not be a significant determinant of y, in equation
(1.26).

12 For example, suppose the government uses the immediate history of y, to determine
what it wishes current y, to be; hence, it alters x, to achieve this policy outcome.
However, economic agents also ‘know’ the model (the policy rule) underlying (1.26} and
(1.28%). Thus when POL, changes, agents alter their behaviour (the parameters of 1.26
change) since they have anticipated the intended impact of government policy.
Econometric models that fail to separate out the expectations formulation by economic
agents from the behavioural relationships in the model itself will be subject to Lucas’s
critique.

13 While we could further extend this to allow for an MA error process, it can be shown
that a relatively simple form of the MA error process can be approximated by
sufficiently large values of p and ¢ in (1.29).
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to say about the form of the (dynamic) adjustment process (which (1.29) is
flexible enough to capture), nor about which variables are exogenous (this
model can also be used as a basis for testing for exogeneity). In fact, Hendry
et al. (1984) argue that the process of econometric modelling is an attempt to
match the unknown d.g.p. with a validly specified econometric model, and thus
‘... economic theory restrictions on the analysis are essential; and while the
data are the result of economic behaviour, the actual statistical properties of
the observables corresponding to y and z are also obviously relevant to cor-
rectly analysing their empirical relationship. In a nutshell, measurement
without theory is as valueless as the converse is non-operational.’ In practical
terms, and according to the Hendry-type approach, the test of model adequacy
i1s whether the model is congruent with the data evidence, which in a single
equation model is defined in terms of the statistical properties of the model
(e.g., a ‘white noise’ error term and parameters that are constant over time) and
whether the model is consistent with the theory from which it is derived and
with the data it admits. Finally, congruency requires the model to encompass
rival models.'*

Role of the Error Term u, and Statistical Inference

As stated above, the error term u, represents the influence of all other variables
excluded from the model that are presumed to be random (or unpredictable)
such that u; has the following statistical properties: its mean is zero [E(u,) = 0];
it has constant variance [E(u?) = o]; and it is uncorrelated with its own past
[E(u,u,_;) = 0]. To this we can add that the determining variable(s) in the
model, assuming they are stochastic, must be independent of the error term
[E(x,u,) = 0].'° If these assumptions hold, then it is shown in standard texts
like Johnston (1984) that estimators like the ordinary least squares (OLS)
estimator will lead to unbiased estimates of the parameter coefficients of the
model (indeed, OLS is the best linear unbiased estimator). If it is further
assumed that u, is drawn from the (multivariate) normal distribution, then
this sufficies to establish inference procedures for testing hypotheses involving
the parameters of the model, based on x2, t- and F-tests and their associated
probability distributions.

Thus, testing to ensure that u, ~ IN(0,¢2) (i.e., an independently distrib-
uted random ‘white noise’ process drawn from the normal distribution) is an
essential part of the modelling process. Its failure leads to invalid inference

14 A good discussion of congruency and modelling procedures is given in Doornik and
Hendry (2001).

15 Although not considered above, clearly this condition is not met in (1.1) and similar
dynamic models, where y,_ is a predetermined explanatory variable, since E(yu;—;) # 0
for i > 1. However, it is possible to show by applying the Mann-Wald theorem
(Johnston, 1984, p. 362) that with a sufficiently large sample size this will not lead to
bias when estimating the parameter coeflicients of the regression model.



