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Preface
About This Book

This book is aimed at the junior- or senior-level student of mathe-
matics, science, and engineering. It can also be used as an amusing
summer course for graduate students by a judicious use of the starred
exercises and proofs. Chapters 1-7 form a leisurely undergraduate
semester course.

The difficulty of the book ramps up gradually—Chapter 8 is at
a strong senior level, while Chapters 9 and 10 (Weak and Strong
Sufficiency) and Chapter 11 (Corner Points) are more abstract and
at very strong senior or graduate level.

The charm of this subject is found in its classical applications
accessible to any student with calculus. We have attempted to down-
play (at first) the technical details, to instead develop technique. As
a result, even a modestly equipped student can carry away a strong
understanding of the subject based on practice with the calculations.
The starred proofs employ advanced machinery but are sketched in
an expository style that may be comprehensible to undergraduates.

Why This Book?

There is no modern text at this level that is accessible to students
armed only with calculus. There are of course the fine classic Dover
editions of Fox, Sagan, Weinstock, Ewing, and Gelfand/Fomin. But
these books are all showing their age, and, unlike our book, none of
these incorporate a simple introduction to optimal control, the bang-
bang theorem, Pontryagin’s maximum principle, or linear-quadratic
control design. Some of the most entertaining applications of the
calculus of variations are found in optimal control.

To the Instructor

At times much of the detail is thrown into the Exercises. This
is to facilitate flow and better display the attractive big picture.
You may include some of these solutions in your lectures or assign
them in some proportion consonant with your degree of commit-
ment to the Moore system. A disk of solutions is available upon
request. Additions and corrections to the text will be updated at
http://www.math.msu.edu/~maccluer/PrenHall/additions.pdf.

ix
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Chapter 1

Preliminaries

This chapter reviews basic tools from calculus that are used in the
calculus of variations—directional derivatives, gradients, the chain
rules, contour surfaces, sublevel sets, Lagrange multipliers, and the
basic notion of convexity. All of these concepts form the basic toolset
for attacking optimization problems.

1.1 Directional Derivatives and Gradients

A point in JR" is denoted by x = (x1,22,...,%,) ", whichisan n x 1
column vector (the superscript * denotes transpose). Suppose a func-
tion f of x represents the profit of a commercial enterprise, where z is
a vector of the parameters of the operation such as labor costs, pro-
duction output levels, price of the commodity, and so on. The man-
ager naturally desires to know in which direction from the present
operating point z° should the company move in order to obtain the
maximum increase in profit. The desired direction is found by using
a multi-variable notion of a derivative: For each unit vector u € IR",
the directional derivative of f at z° in direction u is given by

7 , (1.1)

provided the limit exists. Geometrically, this limit is the slope of the
line tangent to the curve above z? obtained by cutting the hypersur-
face z = f(z) with the hyperplane determined by u and the z-axis.
See Figure 1.1. The directional derivatives in the directions parallel
to the coordinate axes are, of course, the familiar partial derivatives

0f (%)

8.’1:k

Duf(2°) = ;
when v = (0,0,...,0,1 (kth position), 0, ...,0)".

1



2 Chapter 1. Preliminaries

Figure 1.1 The graph of y = f(x) is cut by a plane perpendicular to the
coordinate space in the direction u. The slope of the line tangent to the
curve thus cut out is given by the directional derivative 0,f(x’).

The function f is differentiable at x° provided it is linearly ap-
proximated by its tangent plane near z°. This means there exists a
constant (row) vector a = (a1, ag, ..., a,) such that for all z in some
open ball B = {z; |z — 2°| < r} of radius r about z°,

f(@) = f(z°) + a(z — 2°) + () (1.2a)
= f(«%,23,...,20)+a1(z1—29)+az(za—29)+ - -+ an(wn—20)+e(z),
where €(x) is such that

T S (1.2b)

z—x0 |£E = .’IZOI -
If f is differentiable at 2°, the row vector a is called the gradient of f
at 20, is necessarily unique (Exercise 1.1), and is denoted by V f(z?).
Directional derivatives may exist in all directions without a func-
tion being differentiable (Exercise 1.2). However, there is a simple
formula for the directional derivative in terms of the gradient when
f is differentiable.

Theorem A. Suppose f is differentiable at z°. The directional
derivative in the direction u is obtained as

D, f(z°) = V£ (z°)u, (1.3)
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where the gradient is calculated by

of of of
Vf($0) = (6—.’1,’1’6—:1327,6_.’1:,”)

Proof. Exercise 1.3.

(1.4)

z0

The kth partial derivative 0 f/dzy represents the sensitivity of f
to changes in the kth component variable .

Corollary A. For u € R" with |u| =1,
Do f(z%) = |V f(z%)] cos¥, (1.5)

where 6 is the angle between (the unit vector) u and V f(z?).

Corollary B. The gradient V f(z°) points in the direction of maxi-
mum increase of f at 9. This maximal rate of increase is |V f(z?)|.

Example 1. Let f(z,y) = 2% + zy + 3. The directional derivative
of f at (1,2) in the direction u = (a, b) is then

a
Dy f(1,2) = 2z +y,z+ 3y2)|(1’2) ~ b { = 4a + 13b,

with maximal directional derivative (in the gradient direction) of

value /16 + 169.

1.2 Calculus Rules

The product formula (1.3) for the directional derivative is actually
an instance of a much more general result, the chain rule.

Theorem B. (The First Chain Rule) Suppose that each component
of the vector curve z = z(t) is differentiable at ¢ = t°, and that
f = f(z) is differentiable at z° = x(¢°). Then

dfz@®)| _ 00 N~ Of
7t = V(%)% = Bz

t=t0 k=1

d:l)k

z=x0 E

(1.6)

t=t0
In more transparent notation,

d = Of daxy
7 (x(t))—;&_k?'
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Proof. Combine z = z° + (t — t°)2(¢°) + € with equation (1.2)
(Exercise 1.5).

Example 2. Let f(z,y) = 2?2 —2zy-+y® and z(t) = cost, y(t) = sint.
Then

%f(:c(t), y(t)) = —(2cost — 2sint)sint + (—2cost + 3sin®t) cost.

The First Chain Rule itself is a special case of the following more
general rule.

Theorem C. (The Second Chain Rule) Suppose z = z(u) € R"
is differentiable at u = u® where u = (us,...,u,)" (that is, each
component of z is differentiable), and suppose also that f = f(z) is
differentiable at z° = x(u®). Then at u = u?,

Z 0f 9z; (1.7)

8uk c%vj Ouy,

Proof. Exercise 1.5.

Example 3. Let f(z,y) = 22 — 22y + 93, z = 2 — 02, y = u2 + 02

Then
of

ED)
= —4v*(—2v) + (—2u? + 2v% 4 3(u? 4 v?)?)(20).

= (2z — 2y)(—2v) + (—2z + 3y?)(2v)

Corollary. Suppose f(z) = (fi(z), f2(z),..., fm(z)), where z =
z(u). Then, where differentiable, we have the matrix relation

[afiJ _ [3fz' Oz;
Ou; | 3—%} [3—%]

Ofi Ofi Oz
ou; Z 8a:k 8_113 (1.8)

That is,
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Theorem D. (The Mean Value Theorem) Suppose z° and z! belong
to R™ and f : R™ — IR is differentiable at each point on the line
segment [0, z1] = {tz! + (1 — t)z% 0 <t < 1}. Then there exists a
point zt € [2%, z!] so that

f(a") = f(2%) = Vf(z*)(z" - 2°).

Proof. Apply the usual one-dimensional mean value theorem and
the chain rule to ¢ — f(tz' + (1 — t)z°) defined on [0, 1].

1.3 Contour Surfaces and Sublevel Sets

The locus of all points z satisfying f(z) = f(z°) is called the contour

surface (or a contour curve if n = 2) of f through the point z = z°.

Under mild assumptions on the differentiability of f near z = 9,

we may generically, in theory, solve for one of the components z; of z,

say for z,, in terms of the remaining zy, [i.e., zp, = Zn(x1,...,ZTpn_1)
so that the portion of the contour surface f(z) = f(z°) near z =
20 is the graph of z = f(x1,22,...,%n_1,Zn(Z1,...,Tn_1)) near
(3,...,29_,)].

Example 4. Consider the contour curve z2 — y? = 1 of f(z,y) =
x? — y? through the point (1,0).

The locus has two disjoint branches—one in the first and fourth
quadrant, the other in the second and and third quadrant. But only
one branch passes through (1,0), where we may solve for z in terms
of y:

z=+/1+19y2,

valid for all y. See Figure 1.2.

The technical result that validates the preceding intuition in the
general case is a workhorse of mathematics, the so-called Implicit
Function Theorem. This theorem is easily deducible from another
workhorse, the so-called inverse function theorem. See Chapter 4
and Appendix A. See also Exercises 1.15 and 5.13.
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o

Figure 1.2 The contour curve of x2- f =1.

The value f(z(t)) along any curve C : x = z(t) passing through
20 = 2(0) that lies within the contour surface f(z) = f(z°) must, of
course, be constantly f(z°). But then by the first chain rule,

3 fa®) = 21" =0= Vi@, (19

where of course v = & is tangent to the curve C given by z = z(t)
(i.e., the gradient is normal to the curve C). But since C' was an
arbitrary curve in the contour surface f(z) = f(z°),

The gradient is normal to the contour surface.

(See Exercise 1.38.) This means precisely that the hyperplane H that
is tangent to the contour surface

S={z: f(z) = f(2°)}

at = 20 has normal vector V f(z°), and hence the points of H are
those z that satisfy the equation

V(%) (z — %) =o0. (1.10)
Example 6. The plane tangent to the unit sphere f(z,y,z) = 2+
y?2 + 22 =1 at (2v/3/5, 2/5, 3/5) has equation
(x—2v3/5, y —2/5, z—3/5) - (4V/3/5, 4/5, 6/5) = 0,

that is,
V3z + 10y + 15z = 25.



