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ANNOTATION

We live in the world oversaturated with versatile artificial information processing
systems, such as computers, networks, embedded devices and hand-held gadgets. Thus, we
need to know how all these “smart” machines influence us and our environment, as well as
what are our abilities in developing and controlling them. The world of information
processing devices is very complex. History of human civilization persuasively demonstrates
that to correctly understand and efficiently deal with very complex systems, people need
intellectual tools called theories. This book studies two key problems in the framework and
by means of the theory of algorithms, automata and computation. The first one is to find what
algorithms (represented by computer programs) and automata (representing computers and
computer networks) can do. Namely, we are interested in what problems can be solved and
what decisions can be made by artificial information processing systems. The second problem
is to understand what it is possible to do with algorithms and automata. Possibilities to
perform useful operations, such as optimization, minimization, totaling and approximation,
with computers, networks, embedded devices, hand-held gadgets and their software are
studied. Power of algorithms and automata is treated in a general theoretical context utilizing
the multiglobal axiomatic approach. Examples of applications of the obtained theoretical
results to software correctness are also presented.

The study of algorithms and automata is conducted not for some specific classes of
algorithms and automata, for example, for such as popular classes of Turing machines or
partial recursive functions, but it is done in the axiomatic setting where instead of restricting
our findings to one class of algorithms or automata, axioms provide a powerful flexibility for
theoretical explorations and practical applications. As a result, we compress existing
knowledge about algorithms and automata unifying the theory of algorithms, automata and
computation because axiomatic results allow one to obtain a quantity of specifications for
particular classes of algorithms and automata.

With its more than a hundred theorems, more than hundred and twenty propositions and
more than two hundred and fifty corollaries, some of which are theorems of other authors, the
book is a profound source of theoretical knowledge in computer science and in the theory of
algorithms, automata and computation.



PREFACE

“That’s very curious!” she thought.
But everything’s curious today.”

Lewis Carrol, Alice in the Wonderland

We live in the world where computers, networks and embedded devices underpin a large
amount of everyday life, as well as many individual and social endeavors. Computers are
prevalent in science, education, business, and industry. They have come to entertainment and
politics. Living in the world saturated by computers, networks, and other information
processing systems people rely on them more and more. Thus, not to come to unexpected
disasters, it is necessary to understand and know what computers and networks are doing,
what they can do and what they cannot achieve, which problems are solvable by computers
and which are beyond their power, what is possible to accomplish using computers and
networks and what is beyond our reach even when we use these wonderful devices, which
extend power of people in an unbelievable way.

The world of computers and their applications is very complex and sophisticated. It
involves interaction of many issues: social and individual, biological and psychological,
technical and organizational, economical and political. Complexity of the world of modern
technology is reflected in a study of Gartner Group's TechRepublic unit (Silverman, 2000).
According to it, about 40% of all internal IT projects are canceled or unsuccessful, meaning
that an average of 10% of a company's IT department each year produces no valuable work.
An average canceled project is terminated after 14 weeks, when 52% of the work has already
been done, the study shows. In addition, companies spend an average of almost $1 million of
their $4.3 million annual budgets on failed projects.

However, humankind in its development created a system of intellectual “devices” for
dealing with extremely complex systems. This system is called science and its “devices” are
theories. Science is the only efficient tool for dealing with this overwhelming complexity.

When people want to see what they cannot see with their bare eyes, they build and use
various magnifying devices. To visualize what is situated very far from them, people use
telescopes. To discern very small things, such as microbes or cells of living organisms, pcople
use microscopes. In a similar way, theories are “magnifying devices” for mind. They may be
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utilized both as microscopes and telescopes. Being, as a rule, very complex, these “theoretical
devices” have to be used by experts. That is why IT companies might be able to minimize
canceled projects, as well as to reduce time for the necessary cancellation, if they have
relevant evaluation theory and consult people who know how to apply this theory.

All advanced theories have a mathematical ground core because one of the most efficient
tools to harness complexity is mathematics and theoretical investigation based on
mathematics. Thus, mathematics helps science and technology in many ways. Mathematical
methods play more and more important role in society, helping people to solve their
problems, to obtain new knowledge and to better understand the world people live in.
Mathematics is applied to a diversity of practical fields. Scientists are even curious, as wrote
the Nobel Prize winner Eugene Wigner (1959), why mathematics being so abstract and
remote from reality is unreasonably effective in the natural sciences. It looks like a miracle.

One of the more efficient tools that mathematics is permanently producing is a host of
algorithms for solving various problems. Although many people do not see and understand
algorithms, they are everywhere. Algorithms wired in computers and embedded devices
increasingly pervade people’s vehicles, ships, aircrafts, cell phones, TV sets, copying
machines, medical devices, various appliances, social organizations, medical facilities,
colleges, big and small companies, libraries, and so on and so forth. Solving more and more
complex problems, algorithms themselves are also becoming increasingly and seemingly
inexorably more complex, demanding advanced theoretical tools for their understanding,
development and utilization.

In addition, algorithms are used by people and organizations even without computers and
embedded devices. For instance, algorithms have become instruction manuals for a host of
routine consumer transactions. When people buy some product, e.g., a book, TV set, clothes
or furniture, algorithms tell what is necessary to do. Management and production algorithms
are used by companies which produce and/or sell various products. Companies that use better
algorithms have higher profit. When the Internet is used for selling and buying, algorithms
direct people’s actions and control at the same time reactions of the Internet and used
computers.

Computers, embedded devices and their networks are directed and regulated by
algorithms. Consequently, to know what computers and networks can do, it is necessary to
evaluate abilities of algorithms, and we need more powerful methods and techniques because
complexity of systems created and studied by people grows beyond all imaginable limits.
Computers, their software and their networks are among the most complicated artificial
systems of our time and it is not an easy task to understand and properly use their potential.

Mathematicians and computer scientists developed cogent and effectual means for
solving this problem, creating the theory of algorithms, automata and computation. However,
in this theory different classes of algorithms and automata are studied separately, providing
only occasional connections between these classes. As a consequence, many similar results
are obtained independently and demand individual proofs of their validity. This book extends
tools of this theory, unifying a multiplicity of results for particular classes of algorithms,
automata.

One of the most powerful methodologies developed in mathematics and transmitted to
science is the axiomatic approach. It has demonstrated its power in many areas of
mathematics. We show here that axiomatic methods can be very efficient for the theory of
algorithms and computer science when they are applied to a variety of problems, especially,
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to problems of information technology and computational practice. One of the advantages of
the axiomatic approach is that it works not only for computers, embedded devices and
software systems, but also for their networks, such as Internet or the Grid.

Here we further develop an axiomatic approach in computer science initiated by Floyd,
Hoare, Manna, Blum and other researchers. The axiomatic context allows a researcher to
explore not only individual algorithms and separate classes of algorithms and automata but
also classes of classes of algorithms, automata, and computational processes. As a result,
axiomatic approach goes higher in the hierarchy of computer and network models, reducing
in such a way complexity of their study. The suggested axiomatic methodology is applied to
evaluation of possibilities of computers, their software and their networks with the main
emphasis on such properties as computability, decidability, and acceptability.

The main goal of this book is to demonstrate how axiomatic methods in the framework of
projective mathematics work in computer science, efficiently achieving a high abstract level
for a comprehensive unification of many important results in the theory of algorithms,
automata and computation. At the same time, in spite of the advanced mathematical core,
methods and technique developed here are oriented at various practical problems, such as
software and hardware verification and testing.

Chapters 1 and 2 and Section 3.1 describe methodology and philosophy of the projective
axiomatic theory of algorithms, automata and computation. Mathematical results of this
theory are concentrated in Chapters 4 through 8 and Section 3.2. Used concepts and structures
are mostly explained in the Appendix. However, understanding of the mathematical material
demands sufficient knowledge of basic mathematics, mathematical reasoning and
acquaintance with the conventional theory of algorithms, automata and computation.

It is necessary to stress that the development of the projective axiomatic theory of
algorithms, automata and computation is at the very beginning, providing a rich area for
further research.

The book is a mathematical monograph, which can be used as an addition to the senior
undergraduate course on algorithms, automata, formal languages and computation or as the
textbook for a separate graduate course.



Preface

Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5

Chapter 6

Chapter 7
Chapter 8
Chapter 9
Chapter 10

CONTENTS

Introduction
Algorithms, Programs, and Abstract Automata

Functioning of Algorithms and Automata, Computation,
and Operations with Algorithms and Automata

Basic Postulates and Axioms for Algorithms

Power of Algorithms and Classes of Algorithms:
Comparison and Evaluation

Computing, Accepting, and Deciding Modes of
Algorithms and Programs

Problems That People Solve and Related Properties of Algorithms
Boundaries for Algorithms and Computation
Software and Hardware Verification and Testing

Conclusion

Acknowledgments

References
Appendix

Index

ix

21

41
67

105

139
159
185
241
273
285
287
315
335



Chapter 1

INTRODUCTION

The only way to predict the future is
to have power to shape the future.

Eric Hoffer (1902-1983)

In the first section, we consider philosophical aspects of power structure to put problems
of algorithm and automaton power in the general context of power. Then we discuss different
research approaches in mathematics and computer science to the development of mathematics
and problems in information technology. We also explain what is new in the approach
adopted in this book and how it is related to other directions in mathematics and computer
science. In the last section, we describe the structure of this book.

1.1. DIMENSIONS OF POWER

The sole advantage of power
Baltasar Gracian y Morales (1601 - 1658)

Power is about being able to do definite things. If we look into a dictionary (cf., for
example, (Merriam-Webster Online Dictionary, 2009)), we can see the following definitions
of power.

Power is:

— ability to act or produce an effect;

— legal or official authority, capacity, or right;

— possession of control, authority, or influence over others;
— might, physical strength;

— mental or moral efficacy.

In each of these definitions, we find that power is always related to some area and has
parameters, which allow one to measure, or at least, to estimate, power. In some cases, these
parameters are informal and there are no exact measures for estimating them. For instance,
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taking power as influence of people on other people and on society, we have only some rather
vague indicators of this power.

At the same time, taking the concept of power in physics, we have a very strict definition
and measures for power. Namely, power is the rate at which work is done or energy is
transferred. It is measured in watts equal to joule per second. In mathematical terms, power
is the derivative of work or energy transfer with respect to time.

Saying that power is a capacity to do definite things, we reflect only the most evident
aspect of power. A deeper analysis of the concept of power shows that power also reflects an
ability not to do definite things. For instance, people who serve in the army do not have
power to do many things on themselves — they have to obey orders of their commanders.

We see that this aspect of power, we can call it power of inaction, is associated with the
notion of the free will, which has been frequently discussed in philosophy and theology. It
looks like the firee will has nothing to do with computers, algorithms, and automata. However,
even such a human-related (anthropic) notion as fiee will has its projections on properties of
computers, algorithms, programs, and automata. Namely, for algorithms, computer programs,
computing automata and information processing systems, such as computers and networks,
power is evaluated by what they are able to compute (in general, able to do) and what they
cannot compute (in general, cannot do). These questions have been intensely studied based on
scientific reasoning and mathematical models (cf., for example, (Turing, 1951; Dreyfus,
1979; Penrose, 1989; 1994; Cleland, 1993; Copeland, 1998; Lewis, 2001; Burgin, 2005)).
Here we use a logical relativistic approach to these problems. It allows us to consider and
solve them in more generality than standard approaches do.

To better understand the concept of power and its specific features when power is related
to algorithms, programs and automata, let us consider the structure of the world and the role
of power in this world.

We all live in the physical (material) world and many perceive that this is the only reality
that exists. However, in such philosophical and religious systems as Buddhism or Hinduism,
physical reality is treated as a great illusion and the only true reality is the spiritual world.
According to the reality stratification developed in (Burgin, 1997), it is possible to consider
the spiritual world as a part of a higher layer of the mental world. In contrast to the
conventional point of view, the mental world has many levels. As contemporary psychology
states, each individual has a specific inner world, which is based on the psyche and forms
mentality of the individual. These individual inner worlds form the lowest level of the mental
world, which complements our physical world. On the next level, we have a group mentality,
that is, the mentality of communities and society as a whole. There are also higher levels of
the mental world (Burgin, 1997).

Some thinkers, following Descartes, treat the mental world as independent of the physical
world. Others assume that mentality is produced by physical systems, such as the brain. In
any case, the mental world is different from the physical world and constitutes an important
part of our reality. Moreover, according to contemporary physics, our mentality influences the
physical world and can change it. We can see, for example, how ideas of people change our
planet, create many new things and destroy existing ones. Besides, physicists, who research
the very foundation of the physical world, developed the concept of observer-created reality
interpretation of quantum phenomena (cf., for example, (Herbert, 1987)).
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In any case, as the dualistic model is not complete, the third world, the world of ideas (or
pure forms), was postulated by Plato (429-347 B.C.E.). In spite of the attractive character of
Plato’s brainchild, the majority of scientists and philosophers believe that the world of ideas
does not exist, because nobody has had any positive evidence in support of it. The crucial
argument of physicists is that the main methods of verification in modern science are
observations and experiments, and nobody has been able to find pure forms or ideas by means
of observations and experiments. In spite of this, some outstanding modern thinkers, such as
philosopher Karl Popper (1902-1993), mathematician Kurt Godel (1906-1978), and physicist
Roger Penrose (1931- ), continued to believe in the world of ideas, giving different
interpretations of this world but suggesting no means for their experimental validation. Here
we also adhere to the idea of the triadic world stratification because the development of
science and mathematics allows a new understanding and interpretation of the world of ideas,
giving efficient tools for its validation and clarification. Before we explain the new concepts
and related to them objective phenomena, let us consider classical conceptions.

In the Platonic tradition, the global structure of the world has the form of three
interconnected worlds: material world, mental world, and the world of ideas or forms.

Popper describes the world structure in a different way:

World 1: Physical objects or states.

World 2: Consciousness or psychical states.

World 3: Intellectual contents of books, documents, scientific theories, etc., which is
treated as scientific knowledge.

Other authors refer World 3 to signs in the sense of Charles Pierce, although they do not
insist that it consists of objects that Pierce would classify as signs (cf.,, for example,
(Skagestad, 1993; Capuro and Hjorland, 2003)).

Only recently, modern science made it possible to achieve a new understanding of Plato
ideas, representing the global world structure in the form of the existential triad of the world.
In this triad, the material world is interpreted as the physical reality, while ideas or forms are
associated with structures, and the mental world encompasses much more than individual
mentality or conscience (Burgin, 1997; Burgin and Milov, 1999). In particular, the mental
world includes social mentality (conscience). In this stratification, the World of structures not
only impersonates Plato’s world of ideas but also includes Popper's World 3 as knowledge is
a kind of structures that are represented in people's mentality (Burgin, 2004).

Thus, the existential triad of the world (the world’s global structure) has the following
form:

World of structures

TN

Physical world ———  Mental world

Figure 1.1. The existential triad of the world
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In the physical world, there are the real tables and chairs, sun and stars, stones and
flowers, space and time, molecules and atoms, electrons and photons. In the mental world,
there are also real "things" and "processes". For instance, there exist happiness and pain,
smell and color, love and understanding, impressions and images (of tables, chairs, stones,
flowers, stars, etc.). It has been demonstrated (Burgin, 1997) that the world of structures also
exists in reality. There structures as real as stars and stones, people and their cars, or as
thoughts, moods and emotions.

It is necessary to understand that these three worlds are not separate realities: they
interact and intersect. For instance, individual mentality is based on the brain, which is a
material object. On the other hand, mentality influences physical world (cf., for example,
(Herbert, 1987)).

Even closer ties exist between the structural world and material world. Actually no
material thing exists without a structure. Even chaos has its chaotic structure. Structures make
things what they are. For instance, it is possible to make a table from different materials:
wood, plastics, copper, iron, aluminum, etc. What all these things, which are called a table,
have in common is not their material substance; it is specific peculiarities of their structure.
As physicists argue, physics studies not physical systems as they are but structures of these
systems, or physical structures. In some sciences, such as chemistry, and some areas of
practical activity, such as engineering, structures play the leading role. For instance, the
spatial structure of atoms, chemical elements, and molecules determines many properties of
these chemical systems. In engineering, structures and structural analysis form a separate
discipline (cf., for example, (Martin, 1999)).

Each of these three worlds from the existential triad is hierarchically organized,
comprising several levels or strata. For instance, the hierarchy of the physical world goes
from subatomic particles to atoms to molecules to bodies to cells to living beings and so on.
On the first level of the mental world, individual mentality is situated. The second level
consists of group and social mentalities, which include collective subconscience in the sense
of Jung (1969) and collective intelligence in the sense of Nguen (2008).

The structure of the world projects the corresponding structure on the phenomenon of
power. As a result, we have three dimensions of power:

1. Physical power is a possibility to change physical reality.
2. Mental power is a possibility to change mental reality.
3. Information/structural power is a possibility to change the world of structures.

These three dimensions are explicitly represented in the structure of power in different
democratic countries. For instance, in the United States, there exists the following triad of
power:

Congress

President _ Supreme Court
with the Departments of State
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Congress of the United States as the legislative power forms the structure of society and
state by changing existing laws and approves new laws. Thus, it corresponds to the
information/structural power.

President of the United States with the Departments of State as the executive power
controls physical functioning of the state. Thus, it corresponds to the physical power.

Supreme Court of the United States with other courts in the country, as the Supreme
Court extended power, applies the law. In such a way, it forms the mental level of the US
citizens and society as a whole. Thus, it corresponds to the mental power. Note that courts do
not take physical actions. It is done by police and other similar organizations.

There are different relations and interactions between these dimensions of power. For
instance, sociologists wrote a lot about symbolic power (cf., for example, (Weber, 1951;
Duncan, 1969; Bourdieu, 1977; 2001)). Symbolic power is the power to make people see and
believe certain visions of the world rather than others. Thus, symbolic power is a kind of
mental power.

At the same time, economists and sociologists have developed the concept of structural
power (cf., for example, (Kanter, 1993; Helleiner, 2005; Sarai, 2008; Holden, 2009)). Their
interpretations assign two meanings to the term structural power. The main meaning of
structural power is the ability to influence environment or context, changing their structure.
The concept of structural power, as the power accrued through the definition of frameworks
and rules, has been effectively used by scholars to describe the political relations of the
international financial order. This concept has been particularly useful in explaining the
privileged position of the United States, which has historically developed out of the complex
interrelationship between the United States and financial markets, both domestic and
international.

Another meaning of structural power is the power that people have due to their position
in a social or institutional/organizational hierarchy. This kind of power becomes a structural
determinant affecting organizational behaviours and attitudes. In this case, power is obtained
from the ability to access and mobilize influence, support, opportunities, information and
other resources from one's status in the organization.

Computing power is a kind of structural power because computers and their networks,
such as the Internet, change structures of data and knowledge in the process of their
functioning. Algorithms organize and control computations, as well as communication, and
thus determine structural power of computers. As a result, power of computers and their
networks is represented by and depends on power of algorithms, which is the main object of
study in this book.

1.2. AXIOMATIC METHODS IN MATHEMATICS VERSUS
CONSTRUCTIVE APPROACH

Science may be described as the art of systematic oversimplification.
Karl Popper (1902-1994)

Mathematical methods play more and more important role in society. Mathematics is
applied to a diversity of other fields. Mathematics provides a variety of methods for
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description, modeling, computation, reasoning, constructing etc. This extensive variety of
methods is traditionally divided into two directions: constructive and axiomatic. Beginning
from Euclid’s “Elements,” which present geometry as an axiomatic discipline, axiomatic
methods have demonstrated their power in mathematics. As Burton (1997) writes, generation
after generation regarded the “Elements” as the summit and crown of logic and mathematics,
and its study as the best way of developing facility of exact reasoning. Abraham Lincoln at
the age of forty, while still a struggling lawyer, mastered the first six books of Euclid, solely
as training for his mind. Even now, in spite of the discovery of non-Euclidean geometries and
improvements of the system of Euclid, “Elements” largely remains the supreme model of a
book in mathematics, demonstrating the power of the axiomatic approach.

Mathematics suggests an approach for knowledge unification, namely, it is necessary to
find axioms that characterize all theories in a specific area and to develop the theory in an
axiomatic context. This approach worked well in a variety of mathematical fields:

— in geometry (Euclid's axioms and later Hilbert's axioms (Hilbert, 1899));

— in algebra (actually the whole algebra exists now as an axiomatic discipline);

— in set theory, according to Fraenkel and Bar-Hillel (1958), the most important
directions in the axiomatic set theory are: Zermelo-Fraenkel (ZF), von Neumann
(VN), Bernays-Godel (BG), Quine (NF, ML) and Hao Wang () axiomatic theories;

— in topology (Hausdorff's axioms (Hausdorff, 1927)), and even in such an applied area
as probability theory (Kolmogorov's axioms (Kolmogorov, 1933)).

Axiomatization has been often used in physics, biology, and some other areas, such as
philosophy or technology.

The axiomatic approach acquires its name from the Greek word axioma, which means
"that which is thought fitting; decision; self-evident principle.”

In general, axioms are statements felt weighty enough to take them without proofs and
build a theory based on these statements. However, in a mathematical context, axioms usually
reflect the existing mathematical practice, while in other fields, such as physics or biology,
axioms represent important properties of studied objects and their models. As a result, axioms
in science and scientific theories based on axioms are tested by experiments, while
mathematical axioms are only studied and used for discovering new properties of
mathematical structures and relations between these structures. In doing this, the axiomatic
approach has demonstrated its power in many areas of mathematics.

It is assumed that Euclid was the first to introduce and extensively develop the axiomatic
approach in mathematics, writing a thirteen-volume book 7he Elements. This book organized
the geometry known at Euclid’s time into a systematic presentation that has been used as a
model for many papers, monographs and textbooks. In the book, Euclid first defines
geometrical basic terms, such as point and line, then states without proof certain axioms and
postulates about them that seem to be self-evident or obvious truths, and finally derives a big
number of statements (theorems) from the postulates by means of deductive logic. This
axiomatic method has since been adopted not only throughout mathematics but in many other
fields as well. Euclid's Elements set the standard of rigor for nearly two thousand years of
mathematics.
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However, the important philosophical predecessor of Euclid was Aristotle (384-322
B.C.E.), who discussed the first principles of any demonstrative science in the Posterior
Analytics. According to Aristotle, a demonstrative science must start from indemonstrable
principles, which were common to all sciences and were called axioms (cf. (Mueller, 1969)).
A standard example of an axiom for Aristotle is the principle that if equals be subtracted from
equals, the remainders are equal.

The axiomatic approach adopted by Euclid in his Elements was much later embraced and
further developed by the majority of mathematicians starting from the 19" century in their
quest for rigor, consistency and elegance in mathematics. Ever since Euclid the axiomatic
approach is at the heart of mathematics. In addition, as the axiomatic approach admits the
possibility of a mixture of deductive and empirical reasoning, it has become an ideal
pedagogical tool. With the advent of computers, deductive reasoning and axiomatic
exposition have been delegated to computers, which performed theorem-proving, while the
axiomatic approach has come to software technology and computer science (cf., for example
(Floyd, 1967; Hoare, 1969; Manna, 1974)).

The close examination of the axioms and postulates of Euclidean geometry during the
19" century resulted in the realization that the logical basis of geometry was not as firm as
had previously been supposed. New axiom and postulate systems were developed by various
mathematicians, notably by Hilbert (1899), in geometry. These accomplishments together
with the discovery of non-Euclidean geometries and development of modern algebra brought
axiomatic methods to the center of the whole mathematics.

Axiomatization means the following process. Starting with a set of unambiguous
statements called axioms, whose truth is assumed, one is able to deduce all the remaining
propositions of the theory from these axioms using axioms of logical inference.

In an axiomatic theory, objects of study are defined purely by used axioms. This allows
one to find many interpretations and thus, application of axiomatic theories. For instance,
taking an axiomatic set theory, we see that in the first approximation, it is possible to treat a
multitude of systems as sets. The contemporary axiomatic approach is basically the attitude
that doing mathematics, it is not necessary to know what the things researchers are working
with are. Only relations between these objects, rules of operation with them and their
properties are important. For instance, in an axiomatic geometry, instead of knowing what a
point or a line is, it is crucial to be familiar with and be able to use the axioms that describe
points and lines.

It is interesting that the axiomatic approach was also used in areas that are very far from
mathematics. For instance, Spinoza (1632-1677) used this approach in philosophy,
developing his ethical theories and writing his book Ethics in the axiomatic form. More
recently, Kunii (2004) developed an axiomatic system for cyberworlds.

In spite of all success of the axiomatic approach in mathematics, in the final quarter of
the 19", certain mathematicians started to express disapproval of the ‘idealistic’, non-
constructive methods used in the axiomatic mathematics, insisting on the necessity to make
the whole mathematics constructive.

Constructive mathematics is distinguished from its traditional counterpart, axiomatic
classical mathematics, by the strict interpretation of the expression “there exists” (called in
logic the existential quantifier) as “we can construct” and show the way how to do this.
Assertions of existence should be backed up by constructions, and the properties of
mathematical objects should be decidable in finitely many steps. Thus, in order to
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constructively work in mathematics and related areas, such as computer science and physics,
it is necessary to re-interpret not only the expression “there exists” but all the logical
connectives and quantifiers as instructions on how to construct a proof of the statement
involving these logical expressions and how to build the objects used in this proof. As a
result, we come to necessity of algorithms as constructive descriptions of various procedures
and processes. As Markov observed (1954), "the entire significance for mathematics" of
efforts to define algorithm more precisely would be "in connection with the problem of a
constructive foundation for mathematics".

Troelstra (1991) distinguishes eight principal trends in constructive mathematics:
intuitionism, semi-intuitionism, finitism, predicativism, actualism or strict intuitionism,
Markov’s constructivism, recursive analysis, and Bishop’s constructivism.

The first mathematician who laid the foundations of a precise, systematic approach to
constructive mathematics was L.E.J. Brouwer (1881-1966). He created a philosophy and
theory, known as intuitionism, according to which mathematics is a free creation of the
human mind, and an object exists if and only if it can be (mentally) constructed.

With respect to mathematics, Brouwer’s main ideas are

1. Mathematics is not formal, i.e., the objects of mathematics are mental constructions
in the mind of the (ideal) mathematician and only such constructions are exact.

2. Mathematics is independent of experience in the outside world, as well as of
language. Communication by language may serve to suggest similar thought
constructions to others, but there is no guarantee that these other constructions are the
same.

3. Mathematics is not based on logic. On the contrary, logic is a part of mathematics.

The term semi-intuitionism or empiricism refers to philosophical and methodological
ideas of a group of French mathematicians, which included E. Borel (1871-1970), H.
Lebesgue (1875-1941), R. Baire (1874-1932), and the Russian mathematician N.N. Luzin
(1893-1950). Their discussions of foundational problems from mathematics were aimed at
exclusion of too abstract objects, being always in direct connection with specific
mathematical developments. What the semi-intuitionists have in common is the idea that,
even if mathematical objects exist independently of the human mind, mathematics can only
deal with such objects if mathematicians can mentally construct them.

A.A. Markov (1903-1979) formulated in 1948-49 the basic ideas of his approach, which
can be named constructive recursive mathematics:

1. Objects of constructive mathematics are constructive, being words in various
alphabets.

2. The abstraction of potential existence is admissible but the abstraction of actual
infinity is not allowed.

3. A precise notion of algorithm is taken as a basis.

4. Logically compound statements have to be interpreted so as to take the meaning of
component statements into account.

For this theory, Markov elaborated a special model (construction) of algorithms, which
are now called normal Markov algorithms.



