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Preface

This book is aimed primarily at upper level undergraduate and early graduate students
in mathematics. I hope and believe, though, that it will also be of value to engineering
students (particularly those studying electrical engineering, signal processing, and the
like); to students in physics and other sciences; to scientists and technicians who use
Fourier analysis “in real life”; and to anyone fostering an appreciation of the beauty
and power of Fourier analysis, or a desire to acquire such an appreciation.

The prerequisites are few: A good grasp of calculus in one and several variables
will suffice. A number of more advanced concepts are encountered in the course of the
text—complex numbers, linear algebra, differential equations, and a good truckload
or two of ideas from real analysis. But familiarity with these concepts is not required,;
in fact, I hope that the reader who has not encountered them previously will find
herein a good introduction to them.

I've strived for relatively high degrees of mathematical rigor and completeness.
But at the same time, I've tried to place the math in scientific and technological (and
historical) context and to infuse due detail into discussions of specific applications.
(The detail is, though, for the most part limited to that which relates to Fourier analysis.
Real-world applications necessarily entail myriad other considerations; I've avoided
reflection on these in order to stay on point, and because I understand them only
marginally.)

Cover to cover, the book probably amounts to two semesters; however, a variety
of different single-semester tracks may be extracted. For example: a robust course
in Fourier series and boundary value problems could be constructed around Chapters
14, more or less. Here, “more or less” means the following. Sections 1.5, 1.10, and
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3.9 could be skipped; they are not relevant to the solution of boundary value problems.
Sections 1.6 and 3.10 are of tangential relevance; they might also be skipped or at most
skimmed. Additionally, the proofs in Sections 1.4 and 1.7 and throughout Chapter 3
might also be omitted or treated cursorily, depending on one’s focus. Omitting these
proofs would likely leave time for some discussion of Fourier integrals and boundary
value problems; the material for this may be found in Chapters 5 and 6 and Sections
7.1-7.3. (Only the first and last sections of Chapter 5 and the first, second, sixth,
seventh, and eighth of Chapter 6 are truly essential here, as long as one is willing to
glance back at other sections, upon the occasional reference to results therein.)

Alternatively, a course emphasizing aspects of Fourier analysis relevant to techno-
logical and scientific issues (other than the issues arising in the context of boundary
value problems) could be based on Chapters 1, 3, and 5-8. (Any of the Sections 1.5,
1.10,39,6.3, 6.9, and 7.1-7.3 might be omitted.) Or one can teach a very “pure”
Fourier theory course, omitting or minimizing discussion of the material in Chapters
2,4,7,and 8. Or one can, as I do, mix it up. In my own single-semester course, com-
posed mostly of junior and senior math majors and beginning math graduate students,
I focus on Chapter | and Sections 3.1-3.7,5.1-5.4, 5.7, and 6.1-6.6 (from all of this
I omit a good many proofs, but include a good many too) and throw in a smattering
from the remainder. The smattering varies from year to year. I lean toward Sections
2.1,24,2.7,29,4.1,4.2, and 7.4-7.10, and as much of Chapter 8 as there is time
left for; usually, there’s not much.

Aditionally, there are excellent arguments to be made for two-semester (undergrad-
uate and graduate) real analysis/Fourier analysis course sequences. These disciplines
grew up together; indeed, real analysis was invented (discovered?) expressly to create
the proper framework for investigation and formalization of Fourier’s assertions. So
a course in Fourier analysis constitutes a logical sequel to one in real analysis—and
the converse is also true! That is, questions arising out of Fourier analysis demand,
and therefore motivate, many real analysis constructs whose raisons d’etre are, some-
times, not otherwise apparent. So, the two semesters of a real analysis/Fourier analysis
sequence might reasonably be presented in either order, depending on how one feels
about these things, philosophically speaking. I like to think that this text would serve
as well at the tail end of a real analysis/Fourier analysis track as it would at the lead-
ing end of a Fourier analysis/real analysis track. Either way, Chapters 1, 3, 5, and
6 should be of particular interest. (Perhaps Chapter 8 too. Local frequency analysis
and wavelets certainly admit a cornucopia of applications, but the theory, and espe-
cially the real analysis, behind them is also of exceptional beauty. Theorem 8.4.1, in
particular, encompasses an impressive array of real analysis BIG IDEAS.)

This book could never have come to be without the assistance and support of a
number of people. My colleagues Larry Baggett and Dick Holley at the University
of Colorado have been endlessly patient with my persistent emails and have done a
monumental job of unconfusing me with regard to a number of questions. Edward
Burger of Williams College, a better friend even than he is a teacher, has been an
unflagging source of constructive criticism and, even more importantly, encourage-
ment. Martin Hairer of HairerSoft has kindly permitted me to use, in the text, output
from his excellent “Amadeus II” sound editing software. Joseph Hornak of Magnetic
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Resonance Laboratories has generously provided me with the FI-NMR data used
in Section 7.10, along with some quite illuminating commentary and explanation
regarding the related material.

The crew at John Wiley & Sons has been terrific throughout. I am particularly
grateful to Steve Quigley, Laurie Rosatone, Susanne Steitz, and Lisa Van Horn, all of
whom had the audacity to believe in this project.

A heartfelt thanks goes to ten years plus of Fourier analysis students, who have
greatly inspired and continue to inspire me while also providing free proofreading.
Among these students, Marc Lanskey, Tiffany Tasset, and Sonja Wieck have offered
especially valuable suggestions regarding the manuscript itself.

Most of all, thanks to my beautiful, exceptional wife Beth and my wonderful,
extraordinary boys Jack and Nick. Without you, I am nothing. This book is dedicated
to you.

ERIC STADE

Boulder, Colorado



Introduction

Thus there is no function . .. which cannot be expressed by a trigonometric series . .. [or]

definite integral.

—Joseph Fourier [20]

Fourier analysis is the art and science whereby any reasonable function may be
realized as a superposition of sinusoids, each of these sinusoids possessing a distinct
frequency.

We explain: First, by superposition we mean a summation or similar process of
amalgamation. We’ll elaborate shortly, but for the moment the notion of a sum will be
sufficient to capture the general sense of what’s going on. Next, by sinusoid we mean
a linear combination of the two functions cos 27sz and sin 27wsz, where x denotes
a real variable and s some nonnegative, real constant. And by frequency of such a
sinusoid we mean precisely this constant s. See Figure I.1.
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Fig. .1 The functions cos 27 sz (solid) and sin 2ms2 (dashed)
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(We’ll depict some other sinusoids a bit later: see Figs. 1.3 and 1.17.) Note that,
in Figure 1.1, s > 0: A sinusoid of frequency zero is just a constant function, since
cos0 = 1andsin0 = 0.

All of this permits the following somewhat more explicit, though still rather rough,
description of Fourier analysis: Fourier analysis is, roughly, the study of expressions
of the form

flz) = Z (As(f)cos2msz + Bg(f) sin27wsz) , @1

sely

of conditions (on f) under which such an expression will exist; of the nature of the
set F'y, and the coefficients A(f) and B,(f), when it does; of generalizations and
abstractions of such expressions; of their applications; and so on.

Fourier analysis is, in fact, often also called “frequency analysis,” and the elements

As(f) cos2msa + Bs(f)sin 2msx (1.2)

of a superposition (I.1) the “frequency components” of the given function f. Indeed
(1.2) is, for a given s, generally understood as “that part of f having frequency s.”
Also, the set F is frequently (pun intended) called the “frequency domain” of f,and
(1.1) itself a “frequency decomposition” (also known as a “sinusoid decomposition™)
for f.

It turns out that Fourier analysis is of great import and utility, in both “abstract”
and “concrete” settings: And why should this be? Why should Fourier analysis be
central to so many issues in mathematics and the sciences? The short answer is
this: It’s because sinusoids do two particularly nice things. First, they differentiate
in extraordinarily simple, fundamental ways; second, they cycle in extraordinarily
simple, fundamental ways.

Regarding the first of these nice things, we note that the first derivative—and there-
fore also any higher derivative—of a sinusoid is another one, of the same frequency.
In particular, the frequency component (1.2), let’s call it f,(z), is readily seen to
satisfy the basic differential equation

7 (x) = —(2ms)% fo(x). (1.3)

In fact, as is generally shown in an introductory differential equations course, any
function f; satistying (1.3), for a given s > 0, is a sinusoid of frequency s. (If s = 0,
then the solutions to (1.3) are the first-degree polynomials fo(x) = Ax + B.)

As a consequence of this, a great variety of differential equations may be solved
according to the following strategy. First, it’s stipulated that the desired solution f
have an expression of the form (1.1), for some set F dictated by the specifics of
the problem at hand and for as yet unknown coefficients A,(f) and B,(f) (possibly
dependent on other variables). Next, Fourier analysis and other considerations are
applied to the explicit determination of these coefficients, and thus the exact nature
of f is uncovered.

It was, in fact, precisely to address the solution of certain differential equations that
Joseph Fourier (1768—1830) developed Fourier analysis—hence the name. He was
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specifically concerned, in his landmark 1807 manuscript Theory of the Propagation
of Heat in Solid Bodies (and subsequent revisions and expansions thereof, the culmi-
nation of these being the 1822 book The Analytical Theory of Heat [20]), with the
differential equations governing heat conduction. He was able not only to determine
the nature of these equations, but also, via his sinusoidal analysis of functions and
the separation of variables technique — which he also developed, and of which we’ll
make copious use in coming chapters—to solve them under various sets of assump-
tions. (Strictly speaking, both frequency decompositions and separation-of-variables
arguments predated Fourier, in rudimentary forms. However, he was unquestionably
the first to make systematic, fruitful use of either.)

Fourier was aware of the relevance of his ideas to other differential equations,
besides those modeling heat flow. In particular he was able, using these ideas, to shed
considerable light on the “wave equation,” which had previously been studied by
Leonard Euler and Daniel Bernoulli, among others. Even so, Fourier himself likely
would not have predicted the ubiquity presently enjoyed by his ideas in the theory of
differential equations.

Concerning the second particularly nice thing about sinusoids, we recall that they
do, indeed, cycle. That is, they repeat themselves at regular intervals; that is, they’re
periodic. See Figure 1.1 above. This periodicity is familiar, but its extraordinarily
simple, fundamental nature should be emphasized. To this end we consider a point
moving, with constant angular velocity, around the perimeter of a circle —such motion
is, arguably, the simplest kind of periodic motion imaginable. Let’s suppose, to be
specific, that the motion is counterclockwise in a circle of radius 1, centered at the
origin, and that the point sweeps out 27rs radians per unit of time ¢. Then, if this
point has coordinates (1, 0) at time zero, it will have coordinates (cos 27 st, sin 27 st)
at time . See Figure 1.2.

(We note especially that, because each revolution comprises 27 radians, the point
just described has “cycling rate” s. That is, it completes s revolutions per unit ¢. This
justifies our application to s of the term “frequency.”)

Thus the simple, fundamental nature of sinusoids, from the perspective of peri-
odicity, is evident. So in light of (I.1) and the discussion surrounding it, we can
recognize Fourier analysis as a theory whereby quite general phenomena, whether or
not they are themselves periodic or exhibit any obvious overall cyclical behavior, can
be understood as amalgamations of basic periodic elements of definite frequencies.
In particular Fourier analysis, in concert with other ideas and techniques from mathe-
matics, science, and engineering, gives us the ability to investigate, identify, and even
alter these elements. And this ability has a large number of practical applications.

Thus we’ve addressed, however briefly, the what and why of Fourier analysis. But
let’s turn our attention, even more briefly, to the when and how. Specifically, we now
ask: Which functions are reasonable enough to be expressible as superpositions of
sinusoids, and for those that are, what do these expressions look like and how do we
find them?

These are big questions. Their answers, and the very pursuit of those answers,
have had a profound impact on civilization as we know it. Our considerations of these
answers, and this pursuit, will occupy a large portion of this book. For now, though,
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(cos 27st, sin 2mst)

Fig. .2 The functions cos 27st and sin 27st

we’ll try to say just enough about the how and the when to flesh out our overview.

We do so by addressing some gory details that we’ve thus far glossed over. Here’s
an especially gory one: The frequency domain Fy of a given function f is, in fact,
usually infinite. So generally, for a superposition of sinusoid components, we’ll need
not a sum per se, but some infinite analog thereof. Namely, we’ll require either an
infinite series, if the set Fy is discrete (meaning it comprises isolated points on the
real line), as it often is, or a definite integral, if this set is continuous (meaning it
consists of a continuum of points on the line), as it also often is.

And this gives our discussion a new wrinkle; namely, once infinite processes are
thrown into the mix, the issue of convergence of these processes must be addressed.
That is, if we say a function has an expression as a superposition of sinusoids, we
really mean this superposition converges to the function, but for this to make precise
sense, we must be explicit about the meaning of “converges to.”

As we’ll see in this book, there are various useful notions of convergence of
functions. And to each of these corresponds a different notion of reasonable function.
That is, to each given sense of convergence will correspond a different set of criteria
assuring that a function has a frequency decomposition converging to it.

It should be noted that, at the time of Fourier’s work, the concept of convergence
of functions—or of convergence at all, for that matter—was not a very well-formed
one. Nor was the concept of reasonable function—or of function at all, for that matter.
In fact, the first truly systematic studies of functions and convergence grew out of
efforts to understand, clarify, elaborate on, generalize, and make rigorous Fourier’s
decompositions. Such studies then generated distinct mathematical theories of their
own; these theories in turn formed the seeds of the vast discipline presently known,
in the math world, as “real analysis.” So Fourier, in case you were wondering whom
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to blame, is (indirectly) as responsible as anyone, and more responsible than most,
for the development of that discipline.

More specifically, such mathematical quantities, constructs, and results as Riemann
sums and integrals; the formal “e- N and “s-4” definitions of limits; related formal
definitions of continuity and differentiability; definitions and theories of pointwise,
uniform, and norm convergence of functions; Hilbert spaces; Lebesgue integrals
and such theorems regarding them as Fubini’s theorem and the Lebesgue dominated
convergence theorem; distributions; and so on all arose out of investigations into
Fourier’s sinusoid decompositions. We’ll touch upon each of these results, constructs,
and quantities at one place or another in this book, and even so we’ll only skim the
surface of the vast collection of mathematical ideas developed in response to his work.

Indeed it has been argued, convincingly we believe, that the very standards of
precision and rigor that currently prevail in mathematics grew, themselves, out of
examination of Fourier’s claims.

To summarize the story so far, the idea of a sinusoid decomposition, first espoused
(in any generality) by Joseph Fourier in 1807, has wide practical and theoretical
implications.

But what makes Fourier analysis particularly nifty is the richness of the interplay
between its theory and its practice. We know of no mathematical discipline where
this interplay is deeper, and this includes even disciplines about which we know
something.

We'll try, in what follows, to convey not only how the theory makes the practice
fly, but also how the practice elucidates and illuminates the theory.

We conclude this section with three remarks. First, considerable gains in mathe-
matical convenience and elegance may be reaped by reformulating (I.1) in terms of
the complex exponentials €*™*** and e~ 2"*** (Fig. 1.3). Here i denotes the usual
imaginary square root of —1, and

et = cosf + isinf (14)

for 6 € R (cf. the Appendix).

The advantages of the complex exponential perspective will manifest themselves
amply in the course of things.

Our second remark is that the big picture is actually quite a bit bigger than has
been described so far: One may also consider the expression of reasonable functions
as superpositions of other, not necessarily sinusoidal, “building blocks.” And a bit
of investigation reveals not only that decompositions of this sort do exist, but that
they’re abundant; not only that they’re important, but that they’re abundantly so.
We’ll investigate such alternative decompositions a bit later: see especially Chapter
4, Section 7.1, and Chapter 8.

Thirdly, we note that the few details provided to this point concern, strictly speak-
ing, one-dimensional Fourier analysis —that is, they apply to functions of a single real
variable. Certainly multidimensional Fourier analysis, wherein functions of several
variables &y, xg, ... ,x,, are analyzed (into several-variable analogs of the sinusoid
(I.2), or of complex exponentials, or of other sorts of functions), is also of significant
interest, and will be given the requisite attention in appropriate contexts. But we take
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Fig. 1.3 The complex exponentials e?™*** (solid) and e ~2™**® (dashed)

the point of view here, as we will throughout, that the major issues are best introduced
in the one-dimensional setting. From there, the generalization to several dimensions
will usually be quite straightforward.

We now proceed to shade in some elements, already outlined, of the big picture.
Warning: Our shadings won’t always stay within neat, well defined lines. Which is
okay because, in fact, Fourier analysis is like fingerpainting: Its various parts and
patches are not disjoint or sharply delineated but blend, swirl, and fade gently into
each other.

If we’re going to fingerpaint, we’re necessarily going to get our hands dirty. And
there’s no point in trying to wash this stuff off: It’s Fourier analysis, it’s indelible. So
ye who enter here, abandon all soap.
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