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PREFACE

In revising my earlier book, Introductory Calculus, 1 have attempted to
make the subject applicable to problems in the social and behavioral
sciences as well as in biology, business, and economics. The fact that
recent years have seen more students in these disciplines taking an intro-
ductory calculus course has guided my efforts in preparing this edition.

This text is intended as the basis for a semester course in calculus.
It presupposes no knowledge of analytic geometry or trigonometry. It
may therefore be taught during the freshman year, in conjunction with a
semester course in finite mathematics or in statistics, to students with a
background of three years of secondary mathematics or, after a semester
of algebra, to students with less background.

The content of elementary calculus has been carefully rethought with
this purpose in mind. The first chapter deals with functions (mostly
rational) and their graphs, as well as the idea of continuity. Every effort
has been made to introduce the limit concept in a clear, intuitive way.
And in the present edition, the proof of the Limit Theorem has been re-
cast and the treatment of sequences which become infinite has been
improved. Many minor changes have been made. Sufficient material is
included so that all theorems may be proved rigorously. On the other
hand, this development may be broken off at various points, depending
upon the maturity of the student.

Chapter 2 introduces the analytic geometry of a straight line and
treats the tangent to a curve as the best linear approximation to it in the
neighborhood of the point of contact. The treatment of the derivative as
the slope of the linear approximation makes an abbreviation of the proofs
of the differentiation theorems possible and gives them a certain con-
creteness. This is notably the case with the Chain Rule. By using closed
intervals and assuming Weierstirass’ Theorem (existence of maxima and
minima on a closed interval), it is possible to give a simple and complete
treatment of maxima and minima and to study the shape of a graph near
a given point. A natural treatment of the Mean Value Theorem is given
along the same lines. The chapter closes with applications and rate
problems, and a section on applications to business and economics.

Chapter 3 is devoted to the idea of the area under a curve, which is
characterized by three requirements. Assuming that the area function
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exists, it is shown that it is uniquely defined by these properties and that
its derivative is the ordinate. After the determination of areas bounded by
curves, the chapter concludes with a definition of area in terms of sum-
mation and an existence proof for the area function.

Chapter 4 is a study of the exponential functions defined by y = 2¢
and y = e*. All essential properties are derived, and it is shown how
values of the exponential may be calculated by using facts about the
area below its graph. The proof that y = 2% is concave upward has been
simplified. The natural logarithm is introduced as the inverse of the expo-
nential. Applications to radioactive decay and free fall with air resistance
have been retained from the previous edition; and new material has been
added on retarded growth, population studies, and learning theory.

Chapter 5 contains a development of analytic trigonometry by way
of complex numbers. Let x be the arc length measured along the unit
circle from its point of intersection with the real axis. Then cos x and
sin x are defined as the real and imaginary parts of the corresponding
complex number. The addition and subtraction formulas follow imme-
diately, as do the differentiation formulas for the sine and cosine. Graphs
of sin x and cos x are easily constructed. A method is developed for com-
puting values of these functions for arbitrary x, by iteration, and this
process is proved to converge. The other trigonometric functions are
briefly treated, and # is calculated from the integral

Vodx
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Two new sections have been added on the solution of D + k?x = 0
and its applications, especially to the equilibrium of species.

An effort has been made to develop each chapter around a central
idea and to emphasize the nature of mathematical thinking. It has been
the author’s conviction that mathematics texts suffer from a lack of plot.
It is hoped that the present text will not be subject to this criticism and
that its use will give some feeling for mathematical proofs. The number
of exercises has been substantially increased in this edition. Many im-
provements in detail reflect the experience of my colleagues and helpful
comments made by those who have used the book elsewhere.

This book is intended for a semester course. For a longer course, the
author’s Calculus with Analytic Geometry may be used. It contains the
five chapters of this book and the following additional chapters: ‘Anti-
differentiation and Integration,” ‘“Definite Integrals. Applications,”
“Linear Differential Equations,” “Vectors,” “The Inverse Square Law,”

“Vectors in Space. Partial Derivatives,” ‘“Multiple Integration. Vol-
umes,” “Approximation of Functions. Series.”

Stanford, Calif. D. E. R.
June 1969



INTRODUCTION

Each of the following chapters is concerned with a single central idea.
In each case, this idea is at first rather vague and inexact. It must be
sharpened to a precise definition. Once this is done, it is possible to build
on the definition a body of theory which may be summarized in a number
of proved statements or theorems. These theorems will be found to an-
swer almost automatically many of the questions which come to mind in
connection with the central idea from which we started. Hence we are
rewarded for doing some fundamental thinking by the discovery of pro-
cedures which may be used almost without thinking.

It is hoped that this method of organization will bring out the nature
of mathematical thought so that the student will acquire a feeling for the
way in which mathematics develops. It is an all too prevalent opinion
that mathematics consists of a set of rules or routines to be carried out
mechanically. There is of course some truth in this opinion, since, as we
have said, the end result of a theoretical development is often the estab-
lishment of procedures which are almost automatic. This has its good and
bad sides. It is good because mathematics has applications in all aspects
of the natural sciences and technology and more recently in the social
sciences. In the everyday practice of these subjects, it is important that
after a certain amount of training, people may learn to employ certain
mathematical techniques in a semiautomatic way, releasing thought
(which is difficult) for the occasions where it is necessary. The unfortu-
nate side of this situation is that it tends to convey the impression that the
subject is a rather dull one in which there is no creative element. This is
the opposite of the case. In fact, there is no subject which, correctly
understood, makes greater demands upon the imagination. To extract
from an intuitive situation the conceptional essence and pin it down so
that it forms the basis of a fruitful structure requires the highest order of
creative intelligence. The beautiful way in which ideas connect with each
other makes many parts of mathematics into artistically satisfying pieces
of logical architecture. The great mathematician works in a spirit akin to
that of a musical composer. It is hoped that the student will get some-
thing of this feeling from the study of these chapters.
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Xii INTRODUCTION

It is not necessary for him to be a genius to do so. Itis necessary that
he study the subject with emphasis upon the organization of ideas, rather
than upon getting quick answers to numerical problems, that he attempt
to understand the way in which the argument builds up. To do so, re-
quires frequent re-reading and reflection. It is not enough to study one
section at a time and work out a few problems.

Even from the most practical point of view, it is important to study
mathematics in this way. All techniques have their limitations and one
who does not know what lies behind them will use them blindly and
therefore unintelligently. Moreover it is unlikely indeed that in a chang-
ing world, any set of routine operations will prove to be adequate to all
of the situations which will arise in practice. If one cannot make some
modifications to suit the circumstances, he will be handicapped indeed.
The student is therefore urged to bring his own creative talents to bear
on the subject and to acquire a feeling of freedom about it. By doing so,
he will obtain pleasure from the study of mathematics and fit himself to
contribute badly needed understanding to the solution of the problems of
our society.

It is the contention of most informed thinkers that mathematics has
only begun to make its proper contribution to modern life, and that
totally new fields of application are to be anticipated. This we believe to
be true. However, the speed with which these applications will be made
will certainly depend upon the soundness of mathematical education.
Those in a position to make significant new uses of mathematics will miss
their opportunities unless they have a feeling for mathematical thinking
in addition to a knowledge of certain routines.

One further general remark is in order. The student will soon dis-
cover that there is a remarkable parallelism between statements which
may be made about geometrical figures and diagrams on the one hand and
equations and formulas on the other hand—in a word, between geometry
and algebra. More accurately, in the calculus we deal with a kind of ex-
tension of algebra called analysis, in which extra symbols are introduced,
such as —, the symbol for approaches. The point is that our proofs will
look like algebra and, like algebra, the variables x, y, z will indicate places
where numbers may be fitted in. It may well be asked why we use this
symbolism in proofs, when some of the statements proved correspond to
facts which are obvious geometrically, that is, on the diagram.

There are several reasons for this. One is that analytic proofs, as they
are called, are found to give greater security and certainty. It is easy to
overlook certain possibilities on the picture. For example, not until late
in the 19th century was it realized, by the German mathematician Weier-
strass, that functions could exist whose graphs were continuous (without
breaks) but so wiggly that no piece, however short, could be approximated
by a straight line. These curves have no direction at any point. Their
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discovery was made analytically and was a great surprise geometrically.

Actually, mathematics owes much of its fruitfulness to the interplay
between geometrical intuition and analytic proof. Our intuition suggests
what is likely to be true. In the attempt to prove this analytically we may
well discover as we manipulate our symbols that to justify a step, we need
to assume something which we had previously overlooked. On the other
hand, we may notice that the “‘algebra” seems to work all right without
some of the restrictions which we had in mind. We then look back to the
figure and ask what meaning it has to remove these restrictions.

There is a second and important reason for preferring analytic proofs
besides their greater security. In working with symbols, we tend to free
ourselves from the pictures which we had in our minds. It then happens
very often indeed that the symbolic structure or theoretical scheme has
applications to a great many other things than we originally intended.
Mathematics is abstract in the sense that a body of theory has many dif-
ferent possible interpretations in terms of intuitive content. The same
body may be dressed up in many different suits of clothes.

This point will become clearer as we proceed. By way of illustration,
in Chapter 3 we start with the intuitive idea of area under a portion of a
graph.

In due course, after introducing a definition and after translating our
geometrical ideas into analytic terms (referring to the equation of the
graph and so on), we develop a surprisingly simple method of finding such
areas as that in the figure. Then we notice that the procedure has many
interpretations other than area, such as the distance covered by a body
moving with the velocity v = ¢2 from the time when ¢ = 1 sec to that when
t = 2 sec, or the work done in moving a body a certain distance against
a certain force, and so on.

Mathematics is concerned with the logical consequences of different
sets of assumptions. The consequences are true whenever the assump-
tions are true. It is fortunate that assumptions of the same type may be
made in a wide variety of circumstances, so that a theory built with one
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interpretation in mind may be transferred bodily to another field of appli-
cation. This is one of the reasons why mathematics has a virtually un-
limited scope. The discovery of the applicability of a worked-out logical
structure to a new field may produce revolutionary advances. The devel-
opment of such structures is therefore not only exciting to the mathema-
tician, but of great promise to the understanding of the world in which
we live.
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CHAPTER 1

FUNCTIONS AND GRAPHS

1-1 FUNCTIONS AND GRAPHS

The basic idea of this chapter is that of a function. Imagine a machine
which is so constructed that for each number fed into it (punched on a
tape) a single number comes out. The relation of the output number to
the input number is determined by the construction of the machine. For
example, the machine might be a number squarer. Then if we put in the
number 2, the number 4 will come out. If we put in 3, 9 will come out.
Associated with each input number is a corresponding output number called
its square.
Schematically, we may write

Output = (Input)2. 1)
It is customary, however, to use the variables x and y and write
¥ = %=, )

There is nothing mysterious about these letters. They represent places
into which numbers can be put. If we fill these places at random, (2) will
not hold. Thus if we substitute x = 1 and y = 2, (2) is not satisfied, since
2 is not the square of 1. If x = 4 and y = 16, (2) is satisfied. Thus Eq. (2)
defines a pairing of numbers (x) and their squares (x2). When (2) holds
we say that y is the square of x. The equation y = x? is said to define or
determine a certain function of x.

This is an example of an important idea, the concept of a function, for
which we give a formal definition.

Definition. A function (f) is a correspondence between two sets of numbers,
called the domain of the function and the range of the function, such that
with every number x of the domain there is associated exactly one number y
of the range. This y is called the value of the function for the given x.

The function is said to be defined for all the numbers which are in its
domain and for no others.

In calculus the association is usually specified by an equation which
gives the y that corresponds to a given x as a formula involving x. This

1



2 FUNCTIONS AND GRAPHS 1-1

Figure 1-1

was the case in our example, where y = x? gives the y to be associated
with a given x. Unless the contrary is stated, it is understood that the
domain consists of all numbers x for which the formula gives a value y.
In the case of y = x? the domain consists of all real numbers, a term which
will soon be explained. The range consists of 0 and the positive real numbers.

To represent the correspondence of x with y geometrically, we introduce
a pair of axes. By providing each axis with a scale, values of x are associated
with points on a horizontal line called the x-axis and values of y with points
on a vertical line called the y-axis (Fig. 1-1). Thus on the x-axis we mark
a point with the label 0 (zero) and a point to the right of it with the label 1.
Using the distance from 0 to 1 as a unit of measure, we locate points labeled
successively 2, 3, 4, and so on. By applying this unit of measure to the left

of 0, we obtain the points labeled —1, —2, —3,... . The points so located
are called integral points, since the numbers used to name them are the
integers, positive 1, 2, 3,4, ..., negative —1, —2, —3, ..., and zero 0.

Every point on the x-axis may be represented by a decimal, ending or
unending. Thus 1.32 represents a point between 1 and 2 found by dividing
this interval into 100 equal subintervals and counting off 32 of them. The
point 4 of the way from 0 to 1 is represented by the unending decimal
0.333.... The aggregate of all possible decimals, ending or unending,
is called the set of real numbers. Further examples of real numbers are 0.25,
—1.111..., 3.14159... (= =), and 2.0 (= 2). Every point on the x-axis
corresponds to some real number and, conversely, every real number
represents a point on the x-axis. A fuller discussion of real numbers and
scales may be found in the Appendix.

We provide the y-axis with a scale in a similar manner, making the 0
of the y-axis agree with that of the x-axis. This common point, marked O,
or 0, is called the origin. We also agree to take the point 1 on the y-axis
above the origin so that the positive direction on the y-axis is the upward
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one, the negative direction, the downward one. It is not necessary that the
unit [01] on the y-axis have the same length as that on the x-axis, but we
shall assume for the present that it has.

Once the axes have been drawn and marked off, we are in a position to
represent the correspondence of a given y with a given x. We draw a vertical
line (a line parallel to the y-axis) through the point on the x-axis which
corresponds to the given x, and a horizontal line (parallel to the x-axis)
through the point on the y-axis representing the corresponding y. The
point P of intersection of these two lines shall represent the correspondence
of this x and this y. x and y are called the coordinates of P; x is the abscissa
and y the ordinate. The notation (a, b) will be used to denote the point
whose abscissa is a and whose ordinate is b. The points (3, 2), (=2, —2),
and (1, —2) are shown in Fig. 1-2.

After these preliminaries, we can proceed to the graph of y = x2, which
consists of all points whose coordinates satisfy (2). We prepare a short
table of values of x and y (= x?):

x|y(=x?
00
11
2|4
3|9
—11
—24
-39

and locate the corresponding points, O, 4, B, C, D, E, F (Fig. 1-3).
We now sketch a curve passing through the plotted points, as indicated
in the figure. The graph then gives a geometrical picture of the relation
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y = x? in the sense that all pairs of numbers which satisfy this equation
are the coordinates of points on the curve, and all points on the curve have
coordinates x and y for which y = x2. The connection between algebra and
the geometry of the plane brought about by the use of axes and scales is a
very fruitful one. We may visualize a function in terms of its graph and
study a graph by means of the relation between the x- and y-coordinates
of its points. This is the general program of this chapter.

The following observations concerning this program can be made at
the present stage:

1. On a graph of a function of x, there can be only one y for a given x.
This means that the graph of a function cannot have one point directly
above or below another. (There may very well be several x’s for a single y,
as in Fig. 1-3))

2. The domain of definition specified by y = x? consists of all real numbers.
The example y = \/E shows that it may be necessary to exclude some real
numbers from the domain of a function, since \/; has no real value if x
is negative. (If y = \/;, x = y? > 0) It is important, then, to specify the
domain of definition of a given function.

3. In sketching the curve in our example, we assumed that nothing very
exciting could happen between the plotted points so that, for example,
the curve would have no breaks in it nor would it develop a high peak
between two points. This assumption requires investigation. Some functions
do have breaks in their graphs. Others do not. How can we determine
what will happen? We can always plot more points, but we cannot plot
all possible points. A new principle is needed. For the moment, however,
we must use our intuition to sketch the graphs of a few functions and thus
gain experience.
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EXERCISES

Let y be given in terms of x by the following expressions. Plot the corresponding
graphs.

3x + 1
Ly=x® 2.y=x-3 3. y=—3
x* 2 . 4
4.y=7 5. y=x*—-2x 6. y=x
7.y =x%—6x 8 y=x3—6x? 4 9x 9.y=
10. y = 2x? 11 y=(x — 1)? 12. y= =2x + 3
1
3.y = — 4.y =/x 15. y = Yx
1 1
16. y = — 17. y =— 18. y=x—-2
X X
1-2 GRAPHS

The examples so far considered have been rather simple. Except for the
last few exercises, we have been concerned with so-called polynomials, for
which each y-value is built up from the corresponding x-value by taking
powers of x (for example x%, x> x*), multiplying by constants, and adding
or subtracting the resulting terms. Complications occur when we extend
our operations to include division and root extraction.

Example 1. Consider the function defined by the equation

. 1
y—x—2'

The formula 1/(x — 2) defines no value of y when x = 2, since 1/0 is
a meaningless symbol. (Division by zero is impossible.) All other x-values
do lead to y-values. The domain of this function therefore consists of the
set of all values of x different from 2. We denote this domain by the symbol
x # 2.

The graph is shown in Fig. 1-4. We note that for values of x slightly
greater than 2, y is large and positive, while for x-values slightly less than 2,
y is negative and numerically large. To study the situation near x = 2,
it is convenient to consider the values of y for the succession of x-values
given by x=3,25,24, 24, ... and by x = 1,14, 14, 12,... . In general, we
take x = x, =2+ (I/n) and x, =2 — (1/n), n=1,2,3,... . Thus y =
1000 when x = 2ygg5, y = 1,000,000 when x = 21455500 and so on. We
can find a point on the graph as high as we please by choosing an x-value
near enough to 2 and to its right. Similarly, we can find points on the graph
below any specified level by choosing x close enough to 2 on the left. We
describe this situation by saying that y becomes positively infinite as x
approaches 2 from the right and y becomes negatively infinite as x approaches




