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PREFACE

This text is designed for a one-semester or two-quarter course in partial dif-
ferential equations given to third- and fourth-year students of engineering and
science. It may also be used as the basis for an introductory course for gradu-
ate students. Mathematical prerequisites have been kept to a minimum—cal-
culus and differential equations. No vector calculus or linear algebra (other
than 2 X 2 determinants) is necessary. The reader is assumed to have enough
background in physics to follow the derivations of the heat and wave equa-
tions.

The principal objective of the book is solving boundary value problems in-
volving partial differential equations. Separation of variables receives the
greatest attention because it is widely used in applications and because it pro-
vides a uniform method for solving important cases of the heat, wave, and
potential equations. One technique is not enough, of course. D’ Alembert’s so-
lution of the wave equation is developed in parallel with the series solution,
and the distributed-source solution is constructed for the heat equation. In ad-
dition, there are chapters on Laplace transform techniques and on numerical
methods.

The secondary objective is to tie together the mathematics developed and
the student’s physical intuition. This is accomplished by deriving the mathe-
matical model in a number of cases, by using physical reasoning in the math-
ematical development from time to time, by interpreting mathematical results
in physical terms, and by studying the heat, wave, and potential equations
separately.

In the service of both objectives, there are many fully worked examples
and over 750 exercises, including miscellaneous exercises at the end of each
chapter. The level of difficulty ranges from drill and verification of details to
development of new material. Answers to odd-numbered exercises are in the
back of the book.

There are many ways of choosing and arranging topics from the book so as
to provide an interesting and meaningful course. The following sections form
the core, requiring at least 14 hours of lecture: Chapter 1, Sections 1-3;
Chapter 2, Sections 1-5; Chapter 3, Sections 1-3; Chapter 4, Sections 1, 2,
and 4. These cover the basics of Fourier series and the solutions of heat,
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wave, and potential equations in finite regions. My choice for the next most
important block of material is the Fourier integral and the solution of prob-
lems on unbounded regions: Chapter 1, Section 9; Chapter 2, Sections 10 and
11; Chapter 3, Section 6; Chapter 4, Section 3. These require at least six
more lectures.

The taste of the instructor and the needs of the audience will govern the
choice of further material. A rather theoretical flavor results from including:
Chapter 1, Sections 4-7 on Fourier series; Chapter 2, Sections 7-9 on Sturm-
Liouville problems, and the sequel, Chapter 3, Section 4; and the more diffi-
cult parts of Chapter 5, Sections 5-9 on Bessel functions and Legendre poly-
nomials. On the other hand, inclusion of Chapter 7, Numerical Methods,
gives a very applied flavor, especially if students write programs and run
them on a computer.

Chapter 0 reviews solution techniques and theory of ordinary differential
equations and boundary value problems. Equilibrium forms of the heat and
wave equations are derived also. This material belongs in an elementary dif-
ferential equations course and is strictly optional. However, many students
have either forgotten it or never seen it.

In this Third Edition, many sections have been rewritten. Section 5 of
Chapter 0 on Green’s functions and Section 7 of Chapter 1, a Fourier series
convergence proof, are both new. Chapters O and 7 were extensively reorga-
nized. Three short BASIC program segments are included for Fourier coeffi-
cients, Gauss-Jordan elimination, and Gauss-Seidel iteration. Finally, some
200 new exercises have been added, and various useful mathematical formu-
las are collected in a new appendix.

Now it is my pleasure to thank publicly some friends and colleagues. Vic-
tor Lovass-Nagy and Abdul J. Jerri have suggested numerous improvements
and additions over the entire life of the book. Advice, encouragement, sug-
gestions and corrections have come from many colleagues and students in-
cluding Heino Ainso, Charles Cullen, James Foster, Charles Haines, M. M.
Ibrahim, Charles Marshall, Gustave Rabson, Hayley Shen, Harvey Segur and
Kin Wah Tse. The photographs on the cover were kindly supplied by Profes-
sor T. D. Rossing.

Finally, I wish to acknowledge the assistance of reviewers Ilya Bakelman
of Texas A & M University, William Royalty of the University of Idaho, Al
Shenk of the University of California at San Diego, Michael W. Smiley of
Iowa State University, and Monty J. Strauss of Texas Tech University.

David L. Powers
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CHAPTER

ORDINARY DIFFERENTIAL
EQUATIONS

1. HOMOGENEOUS LINEAR EQUATIONS

The subject of most of this book is partial differential equations: their physical
meaning, problems in which they appear, and their solutions. Our principal
solution technique will involve separating a partial differential equation into
ordinary differential equations. Therefore, we begin by reviewing some facts
about ordinary differential equations and their solutions.

We are interested mainly in linear differential equations of first and second
orders, as shown in Egs. (1) and (2):

di

;‘t‘ = ktu + f(0), (1)
&’ d
d_; + k(z);’t‘ + p(tu = ft). 2)

In either equation, if f(¢) is 0, the equation is homogeneous. (Another test: if
the constant function u(z) = 0 is a solution, the equation is homogeneous.) In
the rest of this section, we review homogeneous linear equations.

A. FIRST-ORDER EQUATIONS
The most general first-order homogeneous equation has the form

du
i k(t)u. 3)
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This equation can be solved by isolating u on one side and then integrating:
1 du
- — = k(t
u dt )

Inju| = fk(t)dt +C
u(t) = + eCe_fk(l)dt - Cefk(l)dl (4)

It is easy to check directly that the last expression is a solution of the differ-
ential equation for any value of c¢. That is, ¢ is an arbitrary constant and can
be used to satisfy an initial condition if one has been specified.
For example, let us solve the homogeneous differential equation
du g
— = —tu.
dt
The procedure outlined above gives the general solution
u(t) = ce ™
for any c. If an initial condition such as u(0) = 5 is specified, then ¢ must be
chosen to satisfy it (¢ = 5).
The most common case of this differential equation has k(r) = k constant.
The differential equation and its general solution are
du
— = ku, u(t) = cé. 5
ar (1) &)
If k is negative, then u(¢) approaches O as 7 increases. If k is positive, then u(t)
increases rapidly in magnitude with z. This kind of exponential growth often
signals disaster in physical situations, since it cannot be sustained indefinitely.

B. SECOND-ORDER EQUATIONS

It is not possible to give a solution method for the general second-order linear
homogeneous equation,

d*u

du
prl + k(t)z + p(t)u = 0. (6)

Nevertheless, we can solve some important cases that we detail below. The
most important point in the general theory is the following.
Principle of Superposition. If u,(¢) and u,(¢) are solutions of the same linear

homogeneous equation (6), then so is any linear combination of them:

ut) = cuy(t) + cou(t).
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This theorem, which is very easy to prove, merits the name of principle
because it applies, with only superficial changes, to many other kinds of linear,
homogeneous equations. Later, we will be using the same principle on partial
differential equations.

To be able to satisfy an unrestricted initial condition, we need two linearly
independent solutions of a second-order equation. Two solutions are linearly
independent if the only linear combination of them (with constant coefficients)
that is identically O is the combination with O for its coefficients. There is an
alternative test. Two solutions of the same linear homogeneous equation (6) are
independent if and only if their Wronskian

u (1) ux(1)

W = i) b

@)

is nonzero.

1. Constant coefficients. The most important type of second-order linear
differential equation that can be solved in closed form is the one with constant
coefficients,

du du

— + k— + pu = 0 (k,p are constants). 8

a7 PR (k.p ) (®)
There is always at least one solution of the form u(t) = €™ for an appropriate
constant m. To find m, substitute the proposed solution into the differential
equation, obtaining

m*e™ + kme™ + pe™ = 0, or

m* +km+p=0 9)
(since €™ is never 0). This is called the characteristic polynomial of the differ-
ential equation (8). There are three cases for the roots of the characteristic

equation (9), which determine the nature of the general solution of Eq. (8).
These are summarized in Table 0.1.

TABLE 0-1
d’u du
SOLUTIONS OF — + k— + =0
arr T “ar T PY
Roots of Characteristic General Solution of Differential
Polynomial Equation
Real, distinct: m, # m, u(t) = c,e™" + ce™
Real, double: m; = m, u(t) = c,e™" + cypte™"
Conjugate complex: u(t) = c,e™cos Bt + c,e*'sin Bt

m =a + iB,m=aoa— i
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This method of assuming an exponential form for the solution works for
linear homogeneous equations of any order with constant coefficients. In all
cases, a pair of complex conjugate roots m = a = i lead to a pair of complex
solutions

ealeiﬁl’ eale—iﬁl (10)
which can be traded for the pair of real solutions
e*' cos Bt, e* sin Bt. (11)
We include two important examples. First, consider the differential equation
d’u
= Nu=0 (12)

where \ is constant. The characteristic polynomial of this equation is m”> +
A% = 0, with roots m = =i\. The third case applies; the general solution is

u(t) = c¢; cos A\t + ¢, sin Ar. (13)
Second, consider the similar differential equation
d’u
> Nu = 0. (14)

The characteristic polynomial now is m* — N> = 0, with roots m = =\. If
N > 0, the first case applies, and the general solution is

u(t) = cie™ + ce” ™. (15)
It is sometimes nelpful to write the solution in another form. The hyperbolic
sine and cosine are defined by

1 1
sinh A = E(eA—e_A), coshA = 5(e"+e"‘). (16)

Thus, sinh Az and cosh At are linear combinations of ¢ and e ™. By the
principle of superposition, they too are solutions of Eq. (14). The Wronskian
test shows them to be independent. Therefore, we may equally well write

u(t) = cy cosh A\t + ¢; sinh A\t

as the general solution of Eq. (14), where ¢] and c; are arbitrary constants.

2. Cauchy-Euler Equation. One of the few equations with variable coeffi-
cients that can be solved in complete generality is the Cauchy-Euler equation:

d*u du
f— + k— + pu=0.
X tdt pu 0 (17)



ORDINARY DIFFERENTIAL EQUATIONS 5

The distinguishing feature of this equation is that the coefficient of the nth
derivative is the nth power of ¢, multiplied by a constant. The style of solution
for this equation is quite similar to the preceding: assume that a solution has
the form u(z) = ¢”, then find m. Substituting « in this form into Eq. (17) leads
to

Pmm — D" 2 + kem™ ' + p™ = 0, or
mm — 1) + km + p = 0 (k,p are constants). (18)
This is the characteristic polynomial for Eq. (17), and the nature of its roots

determines the solution as summarized in Table 0.2.
One important example of the Cauchy-Euler equation is

d’u du 2
’zdf B Nu=0 (19)

where X > 0. The characteristic polynomial is m(m — 1) + m — \*> = m* —
A%, The roots are m = =\, so the first case of Table 0.2 applies, and

u(t) = et + et (20)

is the general solution of Eq. (19).
For the general linear equation

d’u du
e — + ——
ar + k(t)dt ptu = 0,

any point where k(¢) or p(t) fails to be continuous is a singular point of the
differential equation. At such a point, solutions may break down in various
ways. However, if f; is a singular point where both of the functions

(t — to)k(t) and (¢ — 1o)°p(z) 1)

have Taylor series expansions, then f, is called a regular singular point. The
Cauchy-Euler equation is an example of an important differential equation hav-

TABLE 0-2
d’u du
SOLUTIONS OF t? — + kt— + pu = 0
ar’ ar " P
Roots of Characteristic General Solution of
Polynomial Differential Equation
Real distinct roots: m, # m, u®) = o™ + ct™
Real double root: m, = m, u(t) = cit™ + c(In)e™
Conjugate complex roots: u(t) = c,t°cos(B In 1) + cot*sin(B In 1)

m =ao+ iB,m=aoa— i
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ing a regular singular point (at t, = 0). The behavior of its solutions near that
point provides a model for more general equations.

3. Other Equations. Other second-order equations may be solved by power
series, by change of variable to a kind already solved, or by sheer luck. For
example, the equation

2

du .
3 7 Nu = 0, (22)

which occurs in the theory of beams, can be solved by the change of variables
1 1
t = —, ult) = —v(2).
z z

In terms of the new variables, the differential equation (22) becomes

d ‘
d—Z: + )\zv = 0.

This equation is easily solved, and the solution of the original is then found by
reversing the change of variables:

u(t) = t(c, cos(Nt) + c, sin(N/D)). (23)

C. SECOND INDEPENDENT SOLUTION

Although it is not generally possible to solve a second-order linear homoge-
neous equation with variable coefficients, we can always find a second inde-
pendent solution if one nontrivial solution is known.
Suppose u,(t) is a solution of the general equation
d’u du
— + k(t)— + p(t)u = 0. 24
a2 k( )E p(t) (24)

Assume that uy(t) = v(t)u,(t) is a solution. We wish to find v(¢) so that u, is
indeed a solution. However, v() must not be constant, since that would not
supply an independent solution. A straightforward substitution of u, = vu, into
the differential equation leads to

Viuy + 2v'uy + vui + k(1) 'uy + vup) + p(t)vu, = 0.
Now collect terms in the derivatives of v. The equation above becomes

wy' + Qui + kOu)v' + @) + kOui + p(u)v = 0.
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However, u, is a solution of Eq. (24), so the coefficient of v is 0. This leaves
A" + Quy + k@t)u)v' = O,,,) (25)

which is a first-order linear eqﬂlation’/f'or v'. Thus, a nonconstant v can be
found, at least in terms of some integrals.
For example, consider the equation

(1 — P — 2t + 2u =0,

which has u,(¢) = t as a solution. By assuming that u, = v - ¢ and substituting,
we get

1-:0 V't + 2v') — 2t(v't + v) + 2vt = 0.
After collecting terms, we have
(1 =" + 2 — 48y =0.
From here, it is fairly easy to find

Vi 4 — 2 -2 1 1

v o l—-08 ¢t 1-1t 1+¢

(using partial fractions), then
Inv' = =2Int — In(1 — ) — In(1 + o).
Finally, each side is exponentiated to get

1 1 1

’

:———:—+
Y"TPRa-p P12
1 | 1+t
v=——-+—-In ;

t 2 1 — ¢

This is a nonconstant v, so it provides a second independent solution:

(1) t 1+1t11+t
u = vt = — —t In
2 2 |1

Summary Some important equations and their solutions follow.

di
15 =L - ku (k is constant)
dt
u(t) = ce
d*u

Z.d—tz+>\2u=0

u(t) = acos \t + b sin \t



