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1 Introduction and Survey

The techniques of ion bombardment and ion implantation are receiving increasing
interest in different fields of science. Their application for the solution of problems
in basic science and their potential utilization in applied science are numerous.

Some years ago the bombardment of semiconductors was the only widely used appli-
cation. While this is still the field of the most practical importance the implantation
of materials in order to improve their resistance against mechanical and chemical
attack is receiving more and more attention.

An energetic particle hitting a surface or interacting with a gas may
merely cause damage,
— itself act as an important quantity for the process,
— end up as a reaction partner during the formation of a new alloy or compound.

Table 1 represents an attempt to classify the studies using ion beams according
to their field of science and according to the main effects caused by the ions. The
arrangement is somewhat arbitrary. But because of the great overlap between the
different kinds of studies, this cannot be avoided.

Therefore, ion implantation is a real interdisciplinary field in which engineers as
well as physicists and chemists work. The chemists were in a minority until recently
and the chemical aspects of ion implantation received much less attention than the
physical and technological ones. Nevertheless, they are just as interesting and of prac-
tical importance for its future development. For these reasons it seems justified to
present the most important works with chemical significance done during the last
decade by chemists, physicists and engineers.

Unfortunately, it is very difficult to demarcate the area of ion bombardment
from the surrounding area and to distinguish the more chemical effects from the
other effects induced by bombardment. Therefore one has to try to find a definition
of “chemical effects of ion bombardment™ in the sense of the present article.

It includes accordingly all studies concerned with:

a) Chemical effects of the radiation or, in other words, changes in the chemical
structure and composition of the targets induced by the bombardment. The rel-
evant chapters are “‘Radiation Damage” and “Surface Chemistry of Materials
Irradiated with Ions”.

b) The chemical state and the chemical reactions of the bombarding ions themselves.
Examples are found mainly in the chapters “Solid State Chemistry of Implanted
Atoms” and in ““Surface Chemistry of Materials Irradiated with Ions™.

c) The use of implanted ions as a probe for the state of a system. The chapters
“Solid State Chemistry of Implanted Atoms™ and “Radiation Chemistry” con-
tain a few examples of interest for chemists.

d) The applications of ion-irradiated materials in chemistry independent of the ir-
radiation effects being of chemical or physical nature. These studies are men-
tioned in the chapter “Surface Chemistry of Materials Irradiated with Ions”.
Semiconductor and thin film technology is an area too large to be included in

this survey, apart from a few comments in Sect. 5. This is also true for “Implantation

Metallurgy”, which has been covered by a number of recent review papers’’ o
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G. K. Wolf

The radiation effects and ion-molecule reactions in gases are other topics which,
strictly speaking, belong to the subjects of this article. But being much too volumi-
nous the subject would by far exceed the extent of this paper. Fortunately, there are
several relevant books available® .

Since there exist quite a number of other methods for surface modification and
for introducing foreign atoms into host lattices, one should discuss briefly the advan-
tages of ion implantation:

a) It is possible to dope every host material with every element. There is no need
to consider the question of solubility or other thermodynamic quantities.

b) Ion implantation is the only method allowing the doping of a host material at
any temperature one likes. Studies of the recovery behavior of materials in the
low-temperature region and of the low-temperature chemistry of foreign atoms
in hosts are thus possible without prior treatment of the system.

¢) One may study the behavior and the reactions of single atoms because the num-
ber of ions interacting with the solids or gases may be limited to avoid mutual
influence.

d) lon bombardment of solids leads to variations of very thin surface layers of a
few A to a few 100 A, while the bulk of the material remains unchanged.

e) The density of defects in the implanted region of solids is very high.

The last two arguments are controversial. In certain cases the impossibility of
doping the bulk of a material or the creation of defects through the implantation
could be disadvantageous. This statement indicates the limitations of the method as
well as the fact that it is an experimentally pretentious technique.

The following three chapters provide an outline of the fundamentals of theinter-
actions of heavy ions with matter and a description of the most important experi-
mental methods for the production and acceleration of ions as well as for the analy-
sis of the products of the bombardment.

In Chaps. 5 and 6 the experimental work with chemical relevance to radiation
effects as well as the chemical “fate” of the bombarding particles and the applica-
tions of the irradiated material are covered.

The last chapter proposes some future trends in this field.

2 Fundamentals of the Interaction of Heavy lons with Matter

2.1 Energy Loss

An energetic ion passing through matter loses energy through interaction with the
surrounding atoms. The mechanism of this energy loss was the subject of many years
of investigation, starting in 1913 with Bohr® and most completely developed in 1963
by Lindhard®. The treatment by different authors contains many assumptions and
correction factors, but the agreement within the experiments is rather good in gener-
al, taking into account a number of additional processes not included in the theory.

6
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The following summarizes the theory of Bohr, Bethe and Lindhard et al. The
major processes of energy loss are:

—  Excitation of the electrons of the surrounding atoms by the energetic ion. This
process is called electronic energy loss or electronic stopping.

— Collisions of the ions with the atoms, called nuclear energy loss or nuclear stop-
ping.

— Charge exchange between the ions and the atoms.

The total energy loss is the sum of the three fractions, and may be written

(E = ‘E + (E + QE
dx total dx electronic dx charge exchange dx nuclear

Since charge exchange represents only a very small fraction of the total energy
loss, it will be neglected in the following considerations.

Electronic energy loss is the prevailing fraction at high energies or low mass num-
bers; nuclear energy loss dominates at low energies and high mass numbers. Thus He ions
of 100 keV lose their energy nearly exclusively by electronic excitation, 10 keV Xe
ions mainly by elastic collisions.

At even higher energy another mechanism starts to play a role, namely Ruther-
ford scattering at the atomic nuclei. But for the energy region we deal with it has not
to be taken into account.

2.1.1 Electronic Stopping

In the theory of Bohr” the energy loss of an ion interacting with an atom is

dE _4nZie? B
ot =——s—
dx electronic my

This is only valid for a fully ionized atom moving with a higher velocity than the

K-shell electrons. B is an interaction parameter for which Bethe® = gave the expres-
sion
5 Z,,Z, = nuclear charge of the ion and atom
B=Z,ln (%Tﬂ) m = electronic mass
v = projectile velocity
I = average excitation energy of the atom

For lower velocities one has to apply inner shell corrections as well as for the cap-
ture of electrons by the primary ion'®—12),

At low velocities (v; << Z; * vq; Vo = Z;e2/") the electronic stopping power
is proportional to v, .
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For this region Lindhard and Scharff!'? gave the formula

dE _ESNezNaOlezv
dx - 173 ;. 72/3\3/2
dx electronic e(Z17 +Z57°) " vy

E ~ 21/6
ag = first Bohr orbit
N = number of atoms per unit volume

vo = Bohr velocity

2.1.2 Nuclear Stopping

Nuclear stopping is only important at low velocities (v; < Z,-vq) where collisions
between the projectile and the target atom as a whole take place. They can be treated
using classical mechanics if the energy is above a certain value, a condition being ful-
filled nearly in all cases of interest for the present paper. The most difficult task in
this treatment is the proper choice of an interatomic potential between two colliding
atoms. Bohr'® as well as other authors discussed this question. There have been sev-
eral attempts using Born-Mayer-, Coulomb-, Nielson-, Brinkman-, and Fiersov-poten-
tials'®).

Lindhard et al. used a Thomas-Fermi potential and calculated the differential
scattering cross section for multiple collisions® as

2
_m-a 1/2
= f(t'/=
6= 5 (t°%)

where f is a numerically evaluated function for which Winterbon et al. give an analyt-
ical approximation16), and t a dimensionless variable and a a measure for the size,
connected to the first Bohr orbit a, :

a, - 0.8853
(Z1F + 2P

2.1.3 Energy Loss Expressed in Universal Constants

The most interesting feature of the work of Lindhard et al.?) is the possibility of ex-
pressing the electronic and the nuclear stopping power in terms of universal constants,
a form independent of the mass and charge of the individual atoms. A “‘universal”
energy € and a universal range p are defined, and the energy loss is expressed in terms

of d_e) instead of @ .
dp dx

8
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The electronic energy loss takes the form

de’ =kell?
dp electronic

0.079 Z1/°Z12Z52 (M, + M,)3?

with k ~
(2P + 231 Ml My

The nuclear energy loss is related to the stopping cross section o by

di =0 *(M%NI_ZL, where
3131 S— 4meZ,Z,M,

the universal energy is calculated by

aM2
Z,Z,e*(M, + M,)

and the universal range is calculated by

47(32M1
: (M, +M,)?

p=RNM

M, M, represent the masses of the projectile or target respectively,
R is the normal range of the projectile in matter and
N is the number of “stopping atoms” per unit volume.

Figure 1 shows the nuclear and electronic specific energy loss.

From the curves it is possible to calculate the “normal” stopping using the above
equations. Note that the curve for the nuclear stopping is really universal, whilst the
curve for the electronic stopping has a different slope (k) for every combination pro-
jectile-target. The figure shows very clearly that nuclear stopping is the dominant
mechanism at low energies and electronic stopping at high energies.

0.6
ke~
S, =k€ <
P
e
A
04 — L
/ Pz
K n P
o2 L / = \\
7 = Fig. 1. Nuclear and elec-
tronic specific energy loss S
0 1 2 4 as a function of energy in
6/2,ic.proport|onal tov dimensionless units
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2.2 lon Ranges and Profiles

2.2.1 Ranges

The treatment covered in the preceding chapter allows the prediction of ranges of
implanted atoms. The range is the total path of the ion or the integral over all %E—
X

If one uses the expression range, one has to define the kind of range meant.
Figure 2 tries to clarify the different types. One might be interested in the total
range R or, more often, in the projected range Ry which is a measure of the dis-
tance of the ion from the surface and has the advantage of being easily accessible to
measurements.

An approximate relation for the region of nuclear stopping is given by Lind-
hard"®

B_I::[+ﬂ2
R, 3M,

The electronic stopping does not lead to major deflection and does not contribute
very much to the lateral spread R|. Another important quantity is the range straggl-
ing AR or AR ). It contains information about the actual distribution of the implanted
ions in a solid. They also have been calculated by various authors, e. g. Schiott'®

In practice, one normally uses tables or graphs presenting ranges, range straggling,
and lateral spread as a function of projectile-target combination and energy. In
general, the energy is given in keV and the range or projected range in ugcm™
which allows an easy comparison of different materials. Some range tables are pre-
sented in Table 2.

T

Fig. 2. The different types of ranges for an ion starting from x=y=Z=017) in the x direction

R; = total range, R]J = projected range,
R, = vector range, R| = lateral range,
RZ = R2+R]

10
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Table 2. Range<energy tables

Author Quantities listed Targets Ref.
G. Dearnaley et al. Rp+ AR, Zy.2,=5,10,15 ... 19)
1. Gibbons et al. Rp. AR, Selected elements and 20)
Rp.ARp compounds
dE dE
R nucl.’ dR. el.
R. G. Wilson, Rp+ AR, Selected elements and 1)
G. R. Brewer compounds

Another possibility is the use of graphs where the reduced range is plotted versus
the reduced energy €, as derived from the theory of Lindhard. They have the advan-
tage of containing all possible information on one page, the disadvantage that one
has to calculate the ““‘normal” units from the equations given in the preceding section.
In most cases the values given in the tables are only for elemental targets or semicon-
ductor compounds. For other compounds one may estimate the ranges assuming a
fractional contribution from the different elements.

1y X2
Rp i Ry
Rp1,2 ... = Range of the elements 1,2 ...

Xy, ... = Fraction of the component in question at the total mass

The accuracy of this estimate is about + 10%%2.

2.2.2. Range Profiles

Range or concentration profiles contain information about the distribution of the
bombarding ions in the solid target. Since the mapping of the distribution in three

mean projected range

log of relative
concentration of
implant

Fig. 3. Theoretical concentra-
L tion profile of implanted
depth below surface atoms in a solid target
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dimensions is quite intricate, one normally presents the intensity distribution in the
direction normal to the surface. This gives a picture of the actual depth distribution
of the ions in the target. The theoretical range profiles are very similar to a Gaussian
distribution around the mean projected range (Fig. 3).

The energy of the ions is responsible for the penetration depth and the depth
distribution.

Figure 4 shows the experimental distribution of ®*Kr ions implanted into amor-
phous Al, O5 at different energies.

Such distribution data can also be presented as integral curves. Here the concen-
tration remaining beyond a certain value at any penetration depth is plotted. This
kind of description makes it very easy to deduct the variations between two depth
values or the concentration at high depth values. Figure S shows the same distribu-
tions as Fig. 4 in the integral form.

The range profiles measured experimentally very often show considerable devia-
tions from the Gaussian form. The reasons for these deviations are:

a) In single crystals or polycrystalline material an alignment of the ion beam with

a crystallographic axis leads to an enhanced penetration of the ions due to the

channeling effect (Sect. 2.4). Figure 6 is a presentation of results using such a

system.
10
g ol
(o))
n
©
o
Q
< 001}
Q001 L ;
0 100 200 300 400 Fig. 5. Range distribution (inte-
Depth in ug Jem? gral) for 85Kr in A120323, 24)
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