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WELCOME

Dr. Edward S. Wright
Director
U.S. Army Materials and Mechanics Research Center
Watertown, MA

I would like to officially welcome all of
you to the 53rd Shock and Vibration Symposium.
Just the fact that there have been 53 of them
speaks very well for the history and stature of
the symposium. It obviously has been held at
the highest level of standards in the past, and
a review of the program for this one indicates
that it is certainly no exception. It appears
to be outstanding. The symposium offers a key
mechanism for the interchange of information in
the shock and vibration field between
government, industry and universities, and we
feel it is extremely valuable.

Since many of you will be visiting the Army
Materials and Mechanics Research Center later in
the week, either to attend the classified
sessions that will be held there, or to tour our
laboratories, I would like to tell you a little
bit about our Center while you are here. It
also glves me the opportunity to do a little
propagandizing or P.R. work. As I have been
asked several times, "What's an AMMRC?"; I will
tell you a little bit about that.

Basically, we are a corporate lab of
DARCOM, the Army Materiel Development and
Readiness Command; this is the part of the Army
that is responsible for developing, procuring,
and supplying to the fielid, all of the military
equipment for the Army. We are responsible for
research and development in the areas of
materials and mechanics for the total DARCOM
community.

We are located about six miles due west of
Boston. We are in the center of a number of
very well-known universities; we are also
located near some other government agencies,
such as the Air Force Electronics Systems
Division at Hanscom Field, and the Department of
Transportation's Research Center. We are on the
site of the old historic Watertown Arsenal. The
Arsenal, as such, was one of the many arsenals
closed during the 1960's, and a portior of what
was the Arsenal evolved into the Army Materials
and Mechanics Research Center.

We are one of the three labs, out of about
20 DARCOM labs, that report directly to the
Headquarters. So basically, we are a corporate

lab, and as such, we work for all of the systems
development commands. We do not have a specific
system development responsibility ourselves, but
we are responsible for supporting all of the
other commands. That means I have many bosses,
one of whom is sitting on my right and will be
giving your Keynote Address: General Stevens,
who commands AVRADCOM, the Army Aviation
Research and Development Command.

We work not only for the development
commands, but also for the readiness commands,
which actually procure and supply the equipment
to the field forces. We also work for the
project managers who are responsible for the
development and the production of major systems
such as the Abrams tank, the Bradley Fighting
Vehicle and the Apache attack helicopter. We
have a research and development mission of our
own, but one of our greatest reasons for being
is the support that we give, not only to these
Army organizations, but to their contractors as
well. Quite often it is the contractors that
first see the materials problems either in
development or production.

I mentioned that we have a research and
development mission. Basically, we are the lead
lab, as designated by DARCOM, in the areas of
materials, solid mechanics, and materials
testing technology. 1In this context, testing
technology refers to testing for the purposes of
accepting materials and components for use in
systems, rather than testing associated with our
research and development mission.

Current emphasis includes materials
processing, and the characterization of
materials to ensure reliability and reduce costs
in future systems. I will not discuss our
various areas of interest at this time, since
you will see examples of this work when you
visit us.

In addition to our basic R&D mission we
perform many other functions, and foremost among
them is the support we provide to the systems
developers. I would like to point out one other
item; that is the management of information and
analysis centers. These are portions of the DOD
Information and Analysis Center Program that are



paid for out of DLA funds but administered by
the three services. We are responsible for
three information analysis centers: Metals and
Ceramics Information Center which is located at
Battelle, Thermo-Physical and Electronic
Property Center, and the Non-Destructive Testing
Information and Analysis Center (NTIAC). NTIAC
is somewhat similar to the Shock and Vibration
Information Center (SViIC). We ran NTIAC in-
house at the Army Materials and Mechanics
Research Center for a long time, just as the
Naval Research Laboratory still runs SviC. I
can well appreciate some of the trials and
tribulations that Mr. Psey and his staff must
endure, based upon our own similar experience.
I do feel that SVIC is doing an out=-standing
job. We help support the SVIC, and we certainly
benefit from what it does. We hope to continue
our close relationship with the Center.

I feel shock and vibration is very
important to AMMRC. Many aspects of the work
that we do for the Army involves shock and
vibration. We are responsible for research on
armor and penetrator materials and for the
development and evaluation of armor materials
and penetrator materials for Army systems. In
the mechanics area we are concerned with the
interaction of armor and penetrators, and I
think that this is the epitome of the shock
regime. We also get involved in vibration
problems. For example, we do quite a lot of
work on that "flying fatigue machine” known as’
the helicopter. So we are deeply interested in
the shock and vibration business, and
appreciative of the efforts of SViC.

I wouid like to preview some of the
facilities and activities that you will see
during your visit to AMMRC. For example, we
have set up a new range within the last few
years to work on gquarter-scale modeling of both
long rod, high density penetrators, and armors
designed to defeat such penetrators. The full
scale penetrators are fired out of 120
millimeter or 155 millimeter tank cannons. We
can launch quarter-scale projectiles up to about
6,000 ft/sec in the firing range, and study the
penetrator-armor interaction process. Going to
higher shock regimes, you will also see our slap
facility. It is part of our Ballistic Missile
Defense Materials Characterization activity and
here we are talking about pressures up in the
megabar regime.

We are more than just a basic research
laboratory, we also have production
capabilities. An example of this is our metal-
working activity. I feel it very important to
our materials development mission that we are
able to produce and fabricate materials, not
just in small lab quantities, but in gquantitits
up to those approaching pilot scale so that the
production processes then can be scaled up by
industry. These prototyping capabilities
include machining facilities. We get deeply
involved in the manufacture of prototypes for
various parts of the Army including most of the
Development Commands, but in particular for the
Armament Command, for whom we have made most of
the prototypes of nucliear artillery projectiles
in past years.

We are also active in the polymer and
composite material processing technologies. For
example, we have film stretching equipment for
making stretched film armor materials such as XP
polymer, injection molding equipment, and
equipment for compounding and blending rubber.
In fact, we are initiating a new coordinated
program pulling together all of the scattered
research and development work within DARCOM on
rubber, and we will be using the compounding and
blending operation in this effort.

A final example includes our filament
winding, pultrusion, autoclaving and braiding
facilities. These represent processing areas in
the composites and polymers area which we feel
will become more and more important in future
Army systems. With the emphasis on weight
saving, higher performance, survivability, and
ballistic damage tolerance, I predict that
composites will be the wave of the future in
many Army systems. We are putting a substantial
part of our program into this area, since we
feel that this is the current growth area.

Again, welcome to the Boston area. We look
forward to seeing you at AMMRC.



KEYNOTE ADDRESS
AVRADCOM RESEARCH IN HELICOPTER VIBRATIONS

Major General Story C. Stevens
Commander, U.S. Army Aviation
Research and Development Command
St. Louis, Missouri

Since the maiden flight in 1940 of the first Army
helicopter pictured in Figure 1, the Army helicopter has
encountered a multitude of vibration problems. These prob-
lems have decreased system productivity and increased life
cycle costs. The following is a progress report on reducing
helicopter vibrations.

Qver the past 40 years, there has been significant
progress in vibration reduction as indicated by Figure 2. This
reduction was partly the result of innovative industry and
government-sponsored research, and partly because of
increasingly stringent Army specifications. Initial reductions
were accomplished by gradual improvements in vibration
design approaches along with trial-and-error airframe
detuning. :

Over the past two decades, improvements were
achieved, for the most part, by add-on vibration control
devices designed to reduce rotor vibratory loads and airframe

vibrations. However, the weight of these devices has increased
from approximately 2% of the payload to approximately
10% of the payload. As a result, mission payloads have been
reduced.

Even though vibration levels have been lowered,
numerous vibration-related problems still persist in the design
of the modern helicopter. Today’s vibration problems are
more critical due to changes in overall mission requirements
which include: nap-of-the earth and high speed flight,
advanced weapons delivery, survivability, transportahility,
high reliability, and low maintenance. The problems that had
to be overcome during recent development programs
provided impetus to develop advanced vibration reduction
methods. About five years ago, AVRADCOM'’s Research and
Technology Laboratories responded to this need by empha-
sizing research efforts directed towards vibration analysis,
vibration control and vibration testing.

Fig. 1 — First Army helicopter, Sikorsky R-4
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To put this research in perspective, we will consider: SIKORSKY BLACK HAKK

first, reviewing vibration design considerations which impact
the modern Army helicopter; second, assessing vibration UTILITY TACTICAL TRANSPORT
technology to establish research priorities; and finally, high- AIRCRAFT SYSTEM
lighting specific Army research programs which address major :
technology deficiencies. . (UTTAS)

The impact of high vibrations on helicopter design can
best be described by recounting problems experienced during
initial flight testing of the Army’s newest helicopters. These
helicopters are the UH-60 or Blackhawk, which is a utility
helicopter, and the AH-64 or Apache, which is an attack
helicopter, both of which are shown in Figure 3. The
problems on these helicopters included higher than expected
rotor vibratory loads, rotor/airframe interactions, airframe
reasonances near excitation frequencies, high empennage
vibrations and ineffective vibration control devices. As a
result, vibration levels measured on the prototype aircraft
were significantly above Army specifications throughout
the flight regime. These first flight vibration levels for the

Blackhawk, shown in Figure 4, are typical for recent develop- HUGHES APACHE
ment aircraft. For the Blackhawk and Apache, these vibra-
tions were reduced, as indicated in Figure 5, after making ADVANCED ATTACK HELICUPTER

numerous configuration changes which included raised
rotors, aerodynamic fuselage fairings, modified hub
absorbers, installed airframe aborbers, local stiffness changes,
crew seat modifications, and isolated stabilators. Although
these changes reduced vibration levels to within Army
specifications, they still required substantial amounts of
flight, ground and wind tunnel testing.

The configuration changes which were necessary to
solve Blackhawk and Apache vibration problems impacted
both system acquisition and productivity. The cost required
to solve vibration problems during the development cycle is
illustrated in Figure 6 in terms of engineering effort. During
the design phase, effort increases gradually until first flight.
At this point, an abrupt increase occurs that extends well
intn the development cycle. This increase can significantly
delay helicopter delivery schedules. The payoffs for mini-
mizing engineering effort and resulting schedule overruns are
significant. In addition, operational costs have also increased
due to higher weight penalties required to reduce vibrations. Fig. 3 —Modemn Army helicopters
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Fig. 6 — Vibrations impact system acquisition

Besides increasing costs during the development cycle,
high vibrations can degrade overall helicopter productivity in
several major areas. These areas include flight envelopes,
human factors, structural integrity, reliability and maintain-
ability, and transportability. A brief discussion of each of
these areas follows.

In absolute terms, flight envelope Ifmitations can be
the most severe vibration penalties. The significance of for-
ward speed on vibrations is shown in Figure 7. Vibration

levels typically increased in the transition region around 30
to 40 knots followed by a decrease in the 80 to 90 knot
region and rapidly increased for higher airspeeds. In aircraft
developed in the 1950°s, high vibrations sometimes limited
forward speeds and degraded maneuverability. However, the
Blackhawk and Apache were successfully designed to achieve
mission profiles which were po wver rather than vibration
limited. Nevertheless, even if power is available, helicopter
forward speed and maneuverability are ultimately vibration
limited as indicated in Figure 8.
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In the human factor area, adverse vibration and noise
elements affect sensor perceptions (see Figure 9). Much of
the human dynamic response data relates vibration amplitude
and frequency to comfort and proficiency limits. These data
show that high vibrations reduce performance and the ability
to carry out complicated mental, tactile and visual acruity-
related tasks. The trend towards complex displays and target
designation systems places increased demands on these skills.
Consequently, high vibrations degrade weapons delivery,
especially in marginal weather and nap-of-the-earth opera-
tions. Over the years, lower vibration levels have increased
human comfort and proficiency which improves crew mis-
sion effectiveness as noted in Figure 10.

High vibrations, or more specifically high vibratory
stresses, affect the fatigue life and hence the structural
integrity -of both primary and secondary helicopter compon-
ents. In fact, component fatigue margins have, in many cases,
been reduced by high vibrations encountered during proto-
type flight testing. Of course, vibrations sustained in normal
operations further reduce fatigue life margins. As a result, the
operational life of helicopter components can be increased,
as shown in Figure 11, by reducing vibrations.

In addition to reducing operational life, excessive
vibrations also reduce reliability and increase.maintenance
of airborne equipment. In Figure 12 you can see that there
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Fig. 9 — Human factors requirements
is a direct correlation between reduced failure rate and

maintenance with reduced vibration levels. Failure rates
associated with hydraulics, power trains, structures and
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flight controls are related to frequency, amplitude and
duration of the vibration environment. For example,

Figure 13 shows that actuator failure rates are much lower
in fixed-wing applications. The greater failure rate in heli-
copters can be attributed to higher vibration levels as well
as high cycle usage. Although the connection may not be
immediately obvious, vibrations and other factors affect
helicopter transportability. For example, the Blackhawk
and Apache procurement specifications required helicopter
dimensions to be compatible with cargo compartments of
military transport aircraft. The transportability requirement
initially resulted in the main rotors being located close to
the airframe. However, in this configuration rotor down-
wash caused higher than expected empennage vibrations and
canopy drumming. These vibrations were so severe that they
limited aircraft speed. Subsequently, main rotor to airframe
separations were increased, as noted in Figure 14, to reduce
vibrations at the expense of transportability.

Fig. 11 — Structural integrity

The previous illustrations gave a perspective on the
significance of vibrations during helicopter development.
They underscored that high vibration levels affect a wide
variety of helicopter design and operational features. Now, I
would like to give you an assessment of where vibration
technology stands.

Advanced vibration design technology has the poten-
tial to improve helicopter mission capabilities as well as

eliminate costly trial-and-error development testing. To
focus research on high payoff areas, AVRADCOM’s
Research and Technology Laboratories prepared a compre-
hensive Vibration Research Development Plan. This docu-
ment reviewed past, current, and planned Army research
programs; assessed the state of the art; identified signifi-
cant vibration technology voids; and recommended areas
for future research.
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To put these findings in perspective, let us briefly
review vibration design considerations. There are several
exitation sources of helicopter vibrations that must be con-
sidered. The primary sources, as noted in Figure 15, are
periodic loads transmitted by main and tail rotors as well as
rotor downwash impingements. In addition, gust loadings,
weapon recoil excitations, and engine exhaust interactions
are likely sources of high vibrations, To minimize these
vibrations, rotor and airframe configurations need to be
designed as indicated in Figure 16. These configurations will
yield low inherent vibrations. Then a variety of vibration
control devices is'available to further minimize vibrations at
critical points. Consequently, the practical vibration
solution usually combines passive vibration design and vibra-
tion control devices. Furthermore, vibration design strongly
depends on an integrated testing methodology. The role of
vibration testing is twofold. First, as noted in Figure 17, it
provides a basis for verifying the vibration environment, and
second, it supplements voids in existing analytical
capabilities.

Based on the foregoing design considerations, five
major categories of helicopter vibration research can be
identified. '

. Rotor vibratory loads

. Airframe structural dynamics
. Rotor/Airframe coupling

. Vibration control devices

. Vibration testing

QU W

Each of these categories will be discussed in terms of tech-
nology deficiencies.

The first category, rotor vibratory loads, can be seen
in Figure 18. Considerable research has concentrated on
developing sophisticated rotor vibratory loads analyses.
However, most of this research has focused on the basic
disciplines of rotor aerodynamics and structural dynamics
rather than on loads analyses. Hence, aerodynamic and
structural phenomena intrinsiz to rotor vibratory laods
are still not completely understood and improvements in
loads analyses have lagged those in these basic disciplines.
Consequently, vibratory loads analyses are forced to rely on
empiricisms and approximations. As a result, rotor loads
predictions have not been very effective for detail design.

. In fact, these analytical deficiencies have required the

designers to depend heavily on vibration control devices and
trial-and-error testing.

In Figure 19 we see the next category, which is an
airframe structural dynamic assessment. Helicopter air-
frames are complicated structures characterized by mul-
tiple cutouts, abrupt discontinuities and numerous dynamic
components. Airframe analyses have evolved into applica-
tions of large-scale finite element models. Even with this
advanced capability, helicopter designers have achieved only
limited success in designing airframes with acceptable . .
resonance placements. A significant deficiency has been
an incomplete understanding of modeling requirements for
complex helicopter structures. There has also been inade-
quate consideration of more design-respective finite element
analysis programs. Thus, as with the rotor analyses, these
sophisticated airframe analyses have not been very effective
in the design process. Again, these deficiencies have led to
a reliance of relatively heavy vibration control devices
instead of passive design concepts.

Rotor/Airframe coupling is addressed in Figure 20.
Coupling analyses depend on both structural dynamic and
aerodynamic interfaces. Effective analysis and understand-
ing of helicopter vibrations require sophisticated rotor/
airframe coupling procedures. Applications of these cou-
pling procedures have been limited by deficiencies in rotor
and airframe analyses as well as computional limitations. In
the past two or three years, the research community has
increased analytical efforts in rotor/airframe coupling. This
research has primarily addressed structural dynamic cou-
pling aspects. Aerodynamic interactional vibration problems
experienced during recent development programs provide
ample evidence of existing voids in this area.

The fourth category of helicopter vibration research,
as noted in Figure 21, is vibration control devices. The
development of vibration control devices has been the -
dominant factor in reducing helicopter vibrations. These
devices include main rotor hub absorbers, airframe
absorbers, and transmission isolators. Local isolators have



also been applied to crew seats, instrument panels, cabin
floors and fuel tanks. There is a substantial level of effort
within the Army and industry that focuses on minimum
weight vibration control devices. More recently, active
control concepts are being considered as alternatives to
minimize rotor vibratory loads and reduce helicopter vibra-
tions. The significant progress in vibration control warrants
continued development of advanced concepts.

In the last research category, vibration testing, three
major areas—ground and flight testing, wind tunnel testing,
and human factors testing—have been assessed. These tests
are frequently used to quantify flight loads and vibrations,
to correlate and supplement analysis and to establish human
vibration exposure criteria. '

Fig. 14 — Transportability requirement
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Fig. 15 — Sources of high vibration



