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This volume, the third in a sequence that began with The Theory of Matroids
and Combinatorial Geometries, concentrates on the applications of matroid theory
to a variety of topics from engineering (rigidity and scene analysis), combinatorics
(graphs, lattices, codes and designs), topology and operations research (the greedy
algorithm). As with its predecessors, the contributors to this volume have written
their articles to form a cohesive account so that the result is a volume that will
be a valuable reference for research workers.
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PREFACE

This is the third volume of a series that began with Theory of Matroids and
continued with Combinatorial Geometries. These three volumes are the
culmination of more than a decade of effort on the part of the many
contributors, potential contributors, referees, the publisher, and numerous
other interested parties, to all of whom I am deeply grateful. To all those
who waited, please accept my apologies. I trust that this volume will be found
to have been worth the wait.

This volume begins with Walter Whiteley’s chapter on the applications of
matroid theory to the rigidity of frameworks: matroid constructions prove
to be rather useful and matroid terminology provides a helpful language for
the basic results of this theory. Next we have Deza’s chapter on the beautiful
applications of matroid theory to a special aspect of combinatorial designs,
namely perfect matroid designs. In Chapter 3, Oxley considers ways of
generalizing the matroid axioms to infinite ground sets, and SimGes-Pereira’s
chapter on matroidal families of graphs discusses other ways of defining a
matroid on the edge set of a graph than the usual graphic matroid method.
Next, Rival and Stanford consider two questions on partition lattices. These
lattices are a special case of geometric lattices and the inclusion of this chapter
will provide a lattice-theoretic perspective which has been lacking in much
current matroid research (but which seems alive and well in oriented matroids).
Then we have the comprehensive survey by Brylawski and Oxley of the Tutte
polynomial and Tutte-Grothendieck invariants. These express the dele-
tion—contraction decomposition that is so important within matroid theory
and some of its important applications, namely graph theory and coding
theory. Bjorner describes the homology and shellability properties of several
simplicial complexes associated with a matroid; the complexes of independent
sets, of broken circuits, and of chains in the geometric lattice. This chapter
and the previous one constitute a study of the deepest known matroid
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invariants. We conclude with an exposition by Bjorner and Ziegler of
greedoids, a generalization of matroids that embody the greedy algorithm

and hence are very useful in operations research.

University of Florida Neil L. White
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Matroids and Rigid Structures

WALTER WHITELEY

Many engineering problems lead to a system of linear equations — a
represented matroid — whose rank controls critical qualitative features of the
example (Sugihara, 1984; 1985; White & Whiteley, 1983). We will outline a
selection of such matroids, drawn from recent work on the rigidity of spatial
structures, reconstruction of polyhedral pictures, and related geometric problems.

For these situations, the combinatorial pattern of the example determines
a sparse matrix pattern that has both a generic rank, for general ‘independent’
values of the non-zero entries, and a geometric rank, for special values for
the coordinates of the points, lines, and planes of the corresponding geometric
model. Increasingly, the generic rank of these examples has been studied by
matroid theoretic techniques. These geometric models provide nice illustrations
and applications of techniques such as matroid union, truncation, and
semimodular functions. The basic unsolved problems in these examples
highlight certain unsolved problems in matroid theory. Their study should
also lead to new results in matroid theory.

1.1. Bar Frameworks on the Line — the Graphic Matroid

We begin with the simplest example, which will introduce the vocabulary
and the basic pattern. We place a series of distinct points on a line, and
specify certain bars — pairs of joints which are to maintain their distance —
defining a bar framework on the line. We ask whether the entire framework
is ‘rigid’ — i.e. does any motion of the joints along the line, preserving these
distances, give all joints the same velocity, acceleration, etc.? Clearly a
framework has an underlying graph G = (V, E), with a vertex v; for each joint
p; and an undirected edge {i, j} for each bar {p;, p;}. In fact, we describe the
framework as G(p), where G is a graph without multiple edges or loops, and
p is an assignment of points p; to the vertices v;. If this graph is not connected,
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Figure 1.1.
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then each component can move separately in the framework, and the
framework is not rigid (Figure 1a). Conversely, a connected graph always
leads to a rigid framework (Figure 1.1b), since each bar ensures that its two
joints have the same motion on the line. This gives an informal proof of the
following result.

1.1.1. Proposition. A bar framework G(p) on the line is rigid if and only if the
underlying graph G is connected.

To extract a matrix, we make this argument a little more formal. Assume
the joints p; move along smooth paths p,(t). The length of a bar ||p;(t)—p;(¢)|,
and its square, remain constant. If we differentiate, this condition becomes

d
0k pi(1% = [p:() — p;(N]Lpilt) — p()] = 0.

At t =0, this is written (p; — p;)(p; — p;) = 0. If we have distinct joints on the
line, so that (p; — p;) # 0, this simplifies to (p; — p;) =0.

With this in mind, we define an infinitesimal motion of a bar framework
on the line G(p) as an assignment of a velocity u; along the line to each joint
p; such that u;—u;=0 for each bar {v;, v;}. For example, consider the
framework in Figure 1.1c. The four bars lead to four equations in the
unknowns u = (u,, U,, Uy, Uy, Us):

T

1 0 —1 0 0 0
u;

01 -1 0 0 0
us |=| |.

00 1 -1 0 0
Uy

00 1 0 -1 0
Us |

In general, this system of linear equations is written R(G, p) x u* =0, where
the rigidity matrix R(G, p) has a row for each edge of the graph and a column
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for each vertex, and u' is the transpose of the vector of velocities. We note
that R(G, p) is the transpose of the usual matrix representation for the graph
over the reals: the rows are independent in R(G, p) if and only if the
corresponding edges are a forest (an independent set of edges in the cycle
matroid of the graph).

A trivial infinitesimal motion is the derivative of a rigid motion of the line
- i.e. a translation with all velocities equal. These form a one-dimensional
subspace of the solutions. An infinitesimally rigid framework on the line has
only these trivial infinitesimal motions, so the rigidity matrix has rank |V| — 1.
This rank corresponds to a spanning tree on the vertices, or a basis for the
cycle matroid of the complete graph on |V| vertices. This proves the following
infinitesimal version of Proposition 1.1.1.

1.1.2. Proposition. A bar framework G(p) on the line is infinitesmially rigid if
and only if the underlying graph G is connected.

1.2. Bar Frameworks in the Plane

A bar framework in the plane is a graph G =(V, E) and an assignment p of
points p,€ R? to the vertices v, such that p, # p; if {i, j} € E. If we differentiate
the condition that bars have constant length in any smooth motion, we have

d
;[P0 = p;(01° = [p(t) — p,(0]-[Pi(t) — p}(] = 0.

Accordingly, an infinitesimal motion of plane bar framework is an assignment
u of velocities u;€ R? to the joint such that

(pi—pj):(w;—u;))=0 foreach {i, j} eE.

A plane bar framework is infinitesimally rigid if all infinitesimal motions are
trivial: w;=s + B(p;)*, where s is a fixed translation vector, (x, y)* =(y, —x)
rotates the vector 90° counterclockwise, and f(p,)* represents a rotation
about the origin. (These infinitesimal rotations and translations are the
derivatives of smooth rigid motions of the plane.)

The system of equations for an infinitesimal motion has the form
R(G, p) x u' =0, where the rigidity matrix R(G, p) now has a row for each
edge of the graph and two columns for each vertex. The row for edge {i, j}
has the form

[0 0 ..00p—p 00 .. 00 p—p OO0 .0 0]
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Figure 1.2.
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1.2.1. Example. Consider the frameworks in Figure 1.2. The framework of
Figure 1.2a gives the rigidity matrix

{1.3}-x,—x3 Yi—Vs 0 0 X3 =Xy Ya— N 0 0 0 0 i
{L4)|3xi—x2) 31 —y:) O 0 0 0 3x;—x,) Hyz—y) O 0
{1, 5} X, Vi 0 0 0 0 0 0 -x, —y
{2, 3} 0 0 Xy—Xy  Y3—Y3 X3—X; X3—Y, 0 0 0 0
24 o 0 3-x) 3z-y) 0 0 ix,—x2) i(y;-y2) O 0
{2, 5} 0 0 % V2 0 0 0 0 —X; —),
{3, 5} 0 0 0 0 X3 Vs 0 0 —Xx, —y,J

The rows of this matrix are dependent and have rank 6. This leaves a
(10 — 6 = 4)-dimensional space of infinitesimal motions, including the non-trivial
motion shown in Figure 1.2b, which assigns zero velocity to all joints but
P, and gives p, a velocity perpendicular to the bars at p,. Thus the framework
is not infinitesimally rigid.

The infinitesimal motion is not the derivative of some smooth path for the
vertices. The framework is rigid — all smooth paths, or even continuous paths,
give frameworks congruent to the original framework. Figure 1.2c gives a
similar framework which has the same infinitesimal motions, but is not rigid.

These examples show that there is a difference in the plane between rigid
frameworks and infinitesimally rigid frameworks. A non-rigid plane framework
will have an analytic path of positions p(t) = (..., p;(¢), ...), with all bar lengths
of p(t) the same as bars in p(0), but p(t) not congruent to p(0), forall0 <t < 1
(Figure 1.2c). The first non-zero derivative of this path will be a non-trivial
infinitesemal motion. However, the converse is false: many infinitesimal
motions are not the derivative of an analytic path (recall Figure 1.2b). For
any framework, the independence of the rows of the rigidity matrix induces
a matroid on the edges of the graph. If ‘rigidity’ in a particular plane
framework were used to define an independence structure on the edges of a
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graph, this need not be a matroid (see Exercise 1.6). Therefore, we will restrict
ourselves, throughout this chapter, to the simpler concepts of infinitesimal
motions and infinitesimal rigidity.

The space of trivial plane infinitesimal motions has dimension 3, for
frameworks with at least two distinct joints. This space can be generated by
two translations in distinct directions and a rotation about any fixed point.
Thus an infinitesimally rigid framework with more than two joints will have
an |E| by 2|V| rigidity matrix of rank 2|V|—3. Our basic problem is to
determine which graphs G allow this matrix to have rank 2|V|—3 for at
least some plane frameworks G(p).

The independence structure of the rows of the rigidity matrix defines a
matroid on the edges of the complete graph on the vertices. This matroid
depends on the positions of the joints. If we vary the positions there are
‘generic’ positions that give a maximal collection of independent sets (for
example, positions where the coordinates are algebraically independent real
numbers). At these positions we have the generic rigidity matroid for |V|
vertices in the plane.

1.2.2. Example. Consider the framework in Figure 1.3a. With vertices as
indicated we have the rigidity matrix

@,bp)[1 0 000 0 -1 00 0 0 0
@,b)fo 1 o000 0o 000 -1 0 O
@,by)Jt 1 000 0 000 0 -1 -1
@,b)J0o 0 =1 00 0 100 0 0 O
@,b)lo 0o =210 0 002 -1 0 0
@,by)lo 0 =1 10 0 000 0 1 1
@,b)l0 0 001 -2 -1 20 0 0 0
@,b)l0 0 000 1 000 -1 0 0
(@,b)0 0 001 -1 000 0 —1 1]

The graph of the framework has |E|=2|V|—3, so the framework is
infinitesimally rigid if and only if the rows are independent. This independence
can be checked by deleting the final three columns and seeing that the
determinant of the 9 x 9 submatrix is non-zero. This framework is infinitesimally
rigid and the graph is generically rigid, and generically independent.

Consider any realization with distinct joints a,, a,,a;,b,, b,, b; on a unit
circle centred at the origin (Figure 1.3b). This has a non-trivial ‘in—out’
infinitesimal motion (Figure 1.3c):

for joints a, take the velocity a;=a,;
for joints b; take the velocity b;= —b,.



