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Introduction

In 1998, the first SPIE International Symposium on Multispectral Image Processing and
Pattern Recognition was held at the Huazhong University of Science and Technology,
Wuhan, China. That symposium was a great success, at which scientists, engineers,
and graduate students from more than 20 countries and regions made about 130
presentations of their new research results concerning image processing and pattern
recognition. Of the more than 300 papers presented, nine were selected to be published
in a special issue on image processing and pattern recognition of the /nternational
Journal of Pattern Recognition and Artificial Intelligence.

Today, the second SPIE International Symposium on Multispectral Image Processing
and Pattern Recognition has attracted 500-odd high-level papers from 24 countries and
regions in the world. The scale is larger than before and more departments are
represented. It is our belief that this symposium is bound to score even greater

successes. As one of the SPIE series of academic symposia, it will be held once every
other year.

Image processing, filtering, and analysis are the foundations for computer vision and
analysis, and image matching is a very important application. These topics have long
since aroused extremely great interest of numerous researchers; more than 50 papers
are included in this volume. These proceedings of the conference on Image Matching
and Analysis will promote the academic exchange among researchers of different

countries and regions, and the deepening of the relevant investigations and
applications.

We extend our thanks to all the authors and committe members present for their
contributions to the success of the said symposium!

Bir Bhanu
Jun Shen
Tianxu Zhang
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Image Processing and Pattern Recognition in Textiles

L.X. Kong and F.H. She
School of Engineering and Technology, Deakin University, Geelong, Vic 3217, Australia

ABSTRACT

Image processing and pattern recognition have been successfully applied in many textile related areas. For example, they
have been used in defect detection of cotton fibers and various fabrics. In this work, the application of image processing into
animal fiber classification is discussed. Integrated into/with artificial neural networks, the image processing technique has
provided a useful tool to solve complex problems in textile technology. Three different approaches are used in this work for
fiber classification and pattern recognition: feature extraction with image process, pattern recognition and classification with
artificial neural networks, and feature recognition and classification with artificial neural network. All of them yields
satisfactory results by giving a high level of accuracy in classification.

Keywords: Pattern recognition. Classification, Hybrid artificial neural networks, Animal fibers

1. INTRODUCTION

Computer vision system and image process techniques have used in many textile applications. They have been used in the
evaluation of raw materials properties such as fiber cross section [1] and gravimetric black contents in cotton fibers [2], and
in the evaluation of fabric quality ie recognition of fabric weave patterns (3] and detecting defects in fabric [4].

Animal fibers such merino, mohair and cashmere fibers have very similar scale patterns which are hard for an inexperienced
personnel to distinguish between them. Animal hair fibers of the same type are not unique in terms of structure and
properties because of their growing nature. Furthermore, labelling textiles to indicate their composition requires analytical
means for control, not only for the final product but also for the raw materials and during all stages of processing [5].

Therefore, establishing a reliable and objective test method to differentiate them is a fundamental problem urgently requiring
a solution.

Since its publication in 1954, The Microscopy of Animal Textile Fibers [6] has provided an evidence of identification for a
range of fibers and is still the major reference for fiber identification by using microscope and by comparing fiber pictures
with pictures published. This sort of fiber examination can provide positive identification of the principal natural fiber types.
Although it is a fast and convenient method, the judgement is basically subjective. Consequently, the accuracy of this kind
examination still greatly depends on knowledge, experience and memory of the microscopist.

In addition, natural fibers show a fairly wide variation in appearance. No specific specimen will look exactly like the pictures
published. So a sufficient number of fibers should be examined to cover the range of appearance in any specimen. This
increases the testing cost and time. Recently, Robson [7, 8] reported an approach in fiber identification by using image
processing. In the current work, Artificial Neural Network will be implemented into an image processing system for fiber

identification and classification after the extraction of fibers’ scale information with image processing method and artificial
neural networks.

2. MATERIALS AND FEATURE EXTRACTION

The materials used in this work are merino and mohair fibers. The patterns of a merino fiber are visually different from those
of a mohair fiber (Figs. la and 1b). Scales of the mohair fiber have distant margins, a regular diameter and irregular mosaics
while scale edges of the merino fiber are more likely to be parallel to each other.

Two types of common animal fibers, merino and mohair, were used as the samples for this project. The fibers were randomly
collected from those being used in a factory. After scouring the fibers, their cast images were made on microscope slides
using the method devised by Wildman and Manby [6]. 22 merino and 38 mohair samples were prepared.

Image Matching and Analysis, Bir Bhanu, Jun Shen, Tianxu Zhang, Editors,
Proceedings of SPIE Vol. 4552 (2001) © 2001 SPIE - 0277-786X/01/$15.00 1



Images of prepared samples were captured by means of a Sony CCD camera mounted on an Olympus microscope with a

magnification of 400. Digitisation was done on a video capture card in a Pentium 133 PC. Image’s resolution is 640x480
pixels with a depth of 8 bits (256 grey scales). '

To characterise scale patterns, imaging software WiT5.2, which is a powerful visual programming package for designing

computer algorithms with executive block diagrams, was used to convert visual characteristics into measurable features.

Several techniques [6] of image processing were employed and explained as follows:

Filtering: A high-pass filtering with a kernel of 9x9 pixels was applied to the input images to enhance scale edges
and eliminate gradually changing global effects such as light variations from camera images.

Contrast Stretching: This operation is to allocate more grey levels where there are most pixels and to allocate fewer
levels where there are few pixels. Thus this operation has the effect of improving image contrast.

Thresholding: Thresholding is an operation in which the value of each pixel in the result depends on the value of the
corresponding input pixel relative to one or more values known as thresholds.

Interactive Operations: Some interactive operations were also involved, such as choosing interest region, i.e.
choosing fiber portions and assignment of some constants.

< Rotating: Each fiber portion located would be automatically rotated to a certain direction, eg., the vertical line.

o Morphological Operations: Before performing feature extraction of scale patterns, the images need cleaning up after
previous processing and only showing scale edges. This is done by using a combination of basic morphological
operations, such as erosion and dilation operations to eliminate unwanted noise pixels and fill small holes in the

scale edges’ outlines. A skeletonization operation is iteratively applied to thin the image to a single pixel thick
skeleton.

After these operations, fiber edges and the scale edges are clearly presented (Fig. 1(c)). In scale pattern analysis, each scale
pattern of a fiber is described by nine geometric features extracted from image processing to convert its visual characteristics.
These features are, angle of major axis of the best fit ellipse (F1), lengths of major and minor axes of the best fit ellipse (F2
and F3 respectively), maximum and minimum radial distances squared from the gravity center in each scale cell (F4 and F5
respectively), area of a scale cell (F6), total length of perimeter around a scale edge (F7), and differences in x- and y-
coordinates in each scale (F8 and F9 respectively). The nine features are explained in Figs. 2d and 2e.

3. IDENTIFICATION AND CLASSIFICATION FROM FIBER FEATURES

After the nine features were extracted with image processing technique using the procedures discussed above, an artificial
neural network (ANN) can be trained to identify and classify scales as either merino’s or mohair’s from their feature vectors
given as inputs in the input layer of the ANN. Training algorithm, stopping criteria and representative training set are the
most important and practical aspects related to training an ANN model. The total training iteration number and the cross-
validation set were specified. The training stopped once either the iteration number or the mean square error (MSE) of the
cross-validation set reached their prescribed values. The mean square error of the training set was then analyzed to evaluate
the performance of the training.

F8

e e

(a) (b)

Figure 1. (a): Cast image of merino (b) cast image of mohair (c) processed image of a merino fiber: (d) and (e): Definition of F1 to F9

2 Proc. SPIE Vol. 4552



There are nine nodes, which were the nine feature vectors extracted from each of merino and mobhair fibers, in the input layer
while two nodes are served as desired outputs and labeled as “Merino” and “Mohair” respectively in accordance with the
fiber type. For the desired output, all merino fibers are specified as one while all mohair fibers specified as zero. For the
desired output two, mohair fibers are specified as one and all merino fibers as zero. Thus the desired output vector for
merino is encoded as [1,0]" and the desired output vector for mohair as [0.1]". If the values produced in the output one in
the output layer of ANN are greater than 0.5, the input scales are judged as merino’s while those values are less than 0.5, the
input scales are judged as mohair’s. The closer to 1 the values are, the more confidently the network identifies scales as
merino’s; the closer to O the values are, the more confidently the network identifies scales as mohair’s. Of the samples
measured 61 scales from two merino fibers and four mohair fibers are used as the test set. The rest of the experimental data
is randomized and employed as the training data set in which one-tenth is selected and used as the data for cross validation to
stop the training as discussed above.
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Figure 2. Comparison of desired and predicted fiber types (1 - merino, O - mohair): (a) training data (randomized) (b) test data

After training multiple times, the optimal number of nodes in hidden layer, 19, i.e., a 9-19-2 network, is obtained. The
training and test results from output one are shown in Figure 2. As shown in Fig 2(a), where the training results from 100
specimens randomly selected from training data set are illustrated, all scales of mohair fibers are correctly identified with
very high confidence by the network while the features for some scale patterns of merino fibers seem to be those of mohair
fibers as the predicted scale types tend to approach O (for output one where mohair fibers are specified as zero). From the
testing results shown in Fig. 4(b), the network shows very similar performance of identification on testing data set to that on
the training data set. The network identifies 100% (33 out of 33) mohair’s scale patterns with a high confidence, i.e., their
predicted values in output one produced by the network are less than 0.5 and very close to O which represents the class of
mobhair fibers. Comparatively, 75% (21 out of 28) merino’s scale patterns are correctly identified by the network with less
confidence. Thus the network yields an 88% overall identification rate for testing data set.
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Figure 3. Predication of linear and nonlinear artificial neural network classifiers: Fiber indicator 0 — mohair, fiber indicator 1 - merino
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However, if the assembled information of all scales from a fiber section is considered and then used for testing the ANN, the
fiber can be very easily identified as either merino or mohair. In Fig. 2(b), the features between points 0-15 and 31-45
represent two different merino fiber sections while the other two groups of points represent four mohair fiber sections. Thee
mohair fibers are easily classified not only from the information of their individual scales but also from the assembled
mlormation of fiber sections as all the values produced are close to “0” and have very small variations. For a section of
merino fiber, its scales show a bigger variation in characteristics, i.e., majorities of scales show the characteristics of a typical
nerino fiber while some other scales seem to have the characteristics presented by a typical mohair fiber. From this point of
view, merino fibers can be identified by the ANN with higher identification rate based on the assembled information of fiber

sections. Obviously, the features which represent two sections of merino fibers are totally different from those of four
mohair fiber sections in Fig. 2(b).

A MLP with one or more than one hidden layer of nonlinear PEs can conduct a nonlinear discriminant function while an
ANN without any hidden layer can perform a linear discriminant function. The former is called nonlinear ANN while the
latter is called linear ANN. In this work, the comparison study of these two classifiers on animal fibers - merino and mohair
—was also conducted to show the complexity of the features.

The difference of classification performance between nonlinear ANN and linear ANN can been clearly identified by
analyzing the distribution curves of the output unit one over a fiber class indicator range of (-0.25, 1.25) by both ANNs on
training data set (Figures 3). It is found that there is a very similar trend in classification for both training and testing.

If 0.5 is set as the decision boundary or the intercept point, a very small percentage of the merino and mohair fibers is
wrongly classified by both linear ANN and nonlinear ANN during training and testing since the tails of distribution curves
slightly exceed the boundary. As the tails in Figure 3a are extended flatly and widely, the linear ANN classifies the two
clusters of scale patterns with less confidence. In Figure 3b, a spike close to one or zero can be seen on the decision
distribution curves of nonlinear ANN for merino or mohair scales, indicating the decisions made by nonlinear ANN are quite
distinct. It is also found that the fiber class indicator for a very small number of mohair scales is predicted up to more than
0.9 in the training and these scales are classified as merino scales. This indicates that these mohair scales possess the
characteristics of a typical merino scale.

When a stricter decision rule for fiber classification is set, the nonlinear ANN presents a much more accurate classification of
merino and mohair scales. For example, if only fiber class indicator between 0+0.1 or 1+0.1 is accepted as either mohair or
merino scales respectively, more than 70% of the scales can be accurately identified either as mohair or merino scales using
nonlinear ANN (Fig 3b). However, only about 28% of the scales are accurately classified with linear ANN when the same
decision rule is used (Fig 3a). However, as the classification process of animal fibers is not from individual scales but fibers,
the performance of nonlinear ANN as a fiber classifier can be significantly improved by considering the assembled
information of all scales in a fiber section (Figure 2).

4. PATTERN RECOGNITION AND CLASSIFICATION FROM SCALE IMAGES (WooINET)

Generally, a pattern recognition and classification system is an operational system that minimally contains [9]:

3

< An input subsystem that accepts sample pattern vectors and

< A decision-making subsystem that decides the class to which an input pattern vector belongs.

4.1. Model development

WoolNet is composed of two segments, i.e. an unsupervised neural network and a supervised neural network (Figure 4).
These networks perform different tasks but co-operate with each other. The information of the hidden units in the
unsupervised neural network is serviced as inputs to the supervised neural network. The input units of the supervised neural
network receive the feature vectors extracted from the unsupervised neural network while its output units yield fiber classes.

The same materials and image capturing techniques as these described above in section 2 are used. After that, the images
were normalized. The successful implementation of neural networks depends on several techniques including input data
normalization (or pre-processing), feature extraction, and training. After capturing the gray-scale images, the images need to
be normalized or pre-processed in order for the feature extraction to be effective. The normalization process includes: Slant
normalization. Size normalization, and Brightness normalization.
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4.2. Unsupervised Compression Network and Supervised ANN Classifier

Reducing dimensionality of images provides a more tractable input to the classifier network. Other than that, neural network
classifiers generalise better when they have a small number of independent inputs. It is desirable to reduce the
dimensionality d of high dimensional input pattern to a low dimensional sub-space M (M<d) by extracting the intrinsic
information before presenting them into the classifier network.

To solve pattern identification and classification problems, HANN first undergoes a training session. A set of new scale
patterns, which have not been seen before but belong to the same population of the patterns used to train the network, is
presented to the network. The final task for the network is to calculate their feature vectors by projecting these new patterns
to the reduced subspace and correctly classify them. '

A supervised neural network learns from the input and the error (i.e. the difference between the output of the network and the
desired response). There are two phases in training this supervised segment of HANN with back-propagation algorithm. The
first phase is referred to as forward phase and the second as the backward phase.
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Figure 4. Structure of the WoolNet.

4.3. Results and discussion

Figure 5 compares the reconstructed images with their corresponding input images in the training data set and testing data set.
The first row shows some exemplars of input images from both merino (left) and mohair fibers (right) used in the training
and test data sets; the second, the third and the fourth rows show corresponding reconstructed images from 80, 50, and 20

features, respectively. It indicates that the quality of reconstructed images improves with the quality of input images in the
input layer.

The performance of the supervised ANN for classification can be observed in Figure 6. If fewer features are used to extract
information from the original images, a smaller amount of epochs is required to achieve a quite high accuracy (f=20) while
further computation contributes little to improve accuracy. However, if the features exceed a certain level, the improvement
in the prediction accuracy is very limited as the average cost for features of 50 and 80 remains at a very similar level.
Although the accuracy of the classification with more features is higher during training, it cannot guarantee the achievement
of a generalized model (Figure 6). When the classification rate for the features of 50 and 80 in the training is higher than that
of 20, it is generally lower with the test data set. This means that with 20 features, the major characteristics of both the
merino and mohair fibers have been extracted and used for classification. Although using more features improves the
accuracy in classifying fiber during training, it needs to meet more strict criteria to accurately classify a fiber during test.
This leads to the deterioration in the classification rate during test with more features.
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Figure 5. Input images and their reconstructed images with
different number of features (M): (a) Input image, (b) M=80, (c)

Figure 6.Training and test using different features
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5. CONCLUSIONS

Application of image processing and pattern recognition in textile technology in textile technology is discussed. Specifically
two popular animal fibers, merino and mohair, is classified using different strategies. One is to classify the fibers with their
features extracted using image processing while in another model, a hybrid artificial neural network, WoolNet, was
developed. The WoolNet consists of two segments, an unsupervised feature extraction network followed by a supervised

classifier network. The number of features or principal components can be optimised by considering both the reproductions
of input images and classification accuracy.
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