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To Katja and Alexander



Les théories ont leurs commencements: des allusions vagues, des
essais inachevés, des problémes particuliers; et méme lorsque ces
commencements importent pew dans U’état actuel de la Science, on
aurait tort de les passer sous silence.

F. Riesz,

Les systémes d’équations
linéaires a une infinité
d’inconnues,

Paris, 1913, p. 1.

Scientific subjects do not progress mecessarily on the lines of direct
usefulness. Very many applications of the theories of pure mathe-
matics have come many years, sometimes centuries, after the actual
discoveries themselves. The weapons were at hand, but the men
were not able to use them.

A. R. Forsyth,
Perry’s Teaching of Mathematics,
London, 1902, p. 35.



Preface

*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems
of unbounded operators, occur in a natural way in unitary representation theory of Lie
groups and in the Wightman formulation of quantum field theory. In representation
theory they appear as the images of the associated representations of the Lie algebras
or of the enveloping algebras on the Garding domain and in quantum field theory they
occur as the vector space of field operators or the =-algebra generated by them. Some
of the basic tools for the general theory were first introduced and used in these fields.
For instance, the notion of the weak (bounded) commutant which plays a fundamental
role in the general theory had already appeared in quantum field theory early in the six-
ties. Nevertheless, a systematic study of unbounded operator algebras began only at the
beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, ILASSNER,
Powers, URLMANN and VasiuiEv. From the very beginning, and still today, represen-
tation theory of Lie groups and Lie algebras and quantum field theory have been primary
sources of motivation and also of examples. However, the general theory of unbounded
operator algebras has also had points of contact with several other disciplines. In particu-
lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri-
bution theory, single operator theory, the moment problem and its non-commutative
generalizations and noncommutative probability theory, all have interacted with our
subject.

This book is an attempt to provide a treatmant of %-algebras of unbounded operators
in Hilbert space (the so-called O*-algebras) and of (unbounded) #-representations of
general s-algebras. Roughly speaking, an O*-algebra is a x-algebra £ of linear operators
defined on a common dense linear subspace 2 of a Hilbert space and leaving 9 in-
variant. The multiplication in £ is the composition of operators, which makes sense
vecause of the invariance of the domain 9, and the involution @ — a* in A is defined
dy letting a* be the restriction to 2 of the usual Hilbert space adjoint a*. We always
assume that an O*-algebra on 9 contains the identity map of D. A *-representation of
a general x-algebra with unit is a *-homomorphism of the x-algebra onto some O*-
algebra. Moreover, we also consider some more general families of closable linear opera-
tors (O-families, O-vector spaces, O-algebras, O*-families and O*-vector spaces) which
are always defined on a common dense domain 9.

Our objective is threefold. First, the book gives a thorough treatment of certain of
the basic concepts involved in the theory of O*-algebras and *-representations. These
mainly concern notions like the graph topology, closed and self-adjoint *-representations,
closed and self-adjoint O*-algebras, weak and strong (bounded) commutants, strongly
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positive and completely strongly positive x-representations, to name the most important,
which have proved to be useful and fundamental in the theory. We also develop con-
cepts like directed O-families, commutatively dominated O*-algebras, weak and strong
unbounded commutants, form commutants, induced extensions and strongly n-positive
s-representations with the anticipation that these will be useful in future research. Se-
condly, we aim to prove some of the more involved results of the existing theory. As
a sample, results in Sections 2.4, 4.3,5.3,5.4, 6.2, 7.3, 9.2, 9.4, 10.2, 10.4, 10.5,11.2,12.3
and 12.4 could be mentioned in this respect. Thirdly, the book presents many examples
and counter-examples that help to delimit the general theory. These sometimes require
more involved constructions and arguments than many of the positive results in the
theory. For instance, we construct a self-adjoint #-representation of the polynomial
algebra in two variables, the bounded commutant of which is a given properly infinite
von Neumann algebra in separable Hilbert space.

The scope of this book is, of course, dictated by the stage of the existing theory. Thus,
for instance, the topological theory of O*-algebras occupies a relatively large space in
this monograph, simply because it is much more developed than other parts of the
theory. The choice of the material contained in this book also depends on the author’s
personal view of the existing theory and on his particular research interests. Some
topics such as GB*-algebras, Hilbert algebras, tensor algebras and applications in
physics are not included. Often the original proofs of the results have been improved,
errors have been corrected or the result has been generalized. Frequently the terminology
and the notation have been changed, we hope for the better. Also several new concepts
are introduced.

Apart from the preliminary chapter, the book consists of two parts which are inde-
pendent to a large extent (see also the introduction to Part II). In Part I O*-algebras
and topologies on the domains and the algebras are studied, while Part II is concerned
with *-representations of general x-algebras. Those topics in the theory of #-represen-
tations that primarily involve the study of topologies or the structure of O*-algebras
are treated in part I. Such topics are the continuity of x-representations, the realization
of the generalized Calkin algebra and the abstract characterization of the x-algebras
Z£H(D;:4 € I). Chapter 10 gives a rather thorough treatment of integrable represen-
tations of Lie algebras resp. enveloping algebras. This chapter stands almost entirely
by itself; it requires only a few general definitions and facts from earlier sections.

Almost no bibliographical comments are given in the body of the text; they are gathe-
red in a section entitled “Notes” at the end of each chapter. There, the sources of the
main results, basic concepts and some examples are cited (of course, as far as the authay
is aware), but no attempt has been made to be encyclopaedic. Some of these sectiong
contain a list of references dealing with problems similar to those in the text.

The first two digits in the number of a theorem, proposition, lemma, definition or
example refer to the section and the third digit to the position of the item. Remarks
and formulas are numbered and quoted consecutively within the sections. When a refer-
ence to a formula in another section is made, the number of the section is added; for
instance, 3.2/(1) means formula (1) in Section 3.2. The end of a proof is marked by []
and of an example by O. The reader should also note that we often fix assumptions or
notations at the beginning of a chapter, section or subsection which keep in force through-
out the whole chapter, section or subsection. Further, the proofs of facts stated in the
examples are frequently merely sketched and sometimes they are omitted altogether.
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1. Preliminaries

In this chapter we summarize some basic definitions, notation and results that will be
required in this monograph. Some, but not all, of them are standard or well known. Gene-
ral terminology which is used essentially in one chapter, section or subsection will be
introduced therein.

First we collect some general notation. Throughout, € denotes the complex numbers,
T the complex numbers of modulus one, IR the real numbers, Z the integers, N the
positive integers and IN, the non-negative integers. For ¢ = (¢, ..., #;) € R? and
n = (R, ..., ng) € N4, ¢# is the usual multi-index notation, i.e., t# := i ... the, where
£ :=1for k =1, ...,d. The abbreviations L.h. and c.l.h. mean the linear hull and the
closed linear hull, respectively. Sequences and nets are written as (x,: % € N) resp.
(x;: i € I) or simply as (x,) resp. (z;). In general, sets are denoted by braces such as
{x,:n € N}. For an open or closed subset M of IR?, L?(M) is the Lr-space with respect
to the Lebesgue measure on M. If M is a C*-manifold (with or without boundary) and
n € Nu {oo}, then C?(M) is the set of all complex functions of class C" on M. We denote
by C3°(M) the set of all functions in C*(M) whose support is a compact subset of M.
The continuous complex functions on a topological space M are denoted by C(M).
Lor a and b in IR, we shall write C*[a, b] for C*([a, b]), C[a, b] for C([a, b]), C3>(a, b) for
C((a, b)) and L»(a, b) for L#((a, b)). As usual, d,, is the Kronecker symbol. The closed
unit ball of a normed space ¥ is denoted by %.

1.1. Locally Convex Spaces

As general references for the theory of locally convex spaces we shall use the textbooks
ScHAFER [1], KOTHE [1], [2] and JarRcHOW [1].

All considered vector spaces are either over the real field IR or over the complex field
C. When we speak about a vector space or a locally convex space without specifying
the field, we always mean spaces over C. Let U and M be subsets of a vector space E
over IK. Then U absorbs M if there is an o > O such that M & AU forall 1 € K, |4 = «,
and U is absorbing if it absorbs every singleton {¢}, ¢ € E. The absolutely convex hull
of U is denoted by aco U.

If 7 is a topology on a set £, then we write E[r] for the corresponding topological
space. The induced topology on a subset /" of £ is denoted by 7 ' F' or simply again by =
if no confusion can arise. If 7; and 7, are topologies on E, then 7, S 7, means that t,
is coarser (weaker) than ,.
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A locally convex space is a (not necessarily Hausdorff) topological vector space over
K = R or over IK = C which has a 0-neighbourhood base U satisfying the following
conditions:

(i) For U, U, € U, thereis a U € U such that U & U, n U,.
(i) fU €U, then AU e Uforall 1 € K, 4 5 0.
(iii) Each U € U is absolutely convex and absorbing.

If Uis anon-empty family of subsets of a real or complex vector space which fulfills (i),
(ii) and (iii), then there isa unique topology = on E such that E[z] is a locally convex
space and U is a 0-neighbourhood base for 7. By a locally convex topology on a vector
space E we mean a topology v on £ for which E[z] is a locally convex space. Let I" be a
non-empty family of seminorms on a vector space K. The collection U of all sets

{p € B:pulp) =eforn=1,...,k}, where p;, ..., pp € I', k € N and ¢ > 0,

satisfies (i)—(iii); so U is a 0-neighbourhood base for a unique locally convex topology ©
on E. We then say that v is generated (or defined or determined) by I'. The family I' is
directed if, given p,, p, € I', there is a p € I" such that p, =< p and p, = p.

In what follows we suppose that ¥ is a locally convex Hausdorff space.

Let E' denote the dual of £. The weak topology ¢ = o(E, E') is the locally convex
topology on E defined by the seminorms ¢ — |¢!(¢)|, ¢' € E'. A sequence (¢,:n € N)
in E converges weakly to ¢ € E if it converges in the locally convex space E[¢] to ¢, i.e.
if lim ¢!(p,) = ¢'(p) for all ¢! € E'. The weak*-topology ¢' = o(E', E) on E' is generated

by the seminorms ¢' — |¢'(p)|, ¢ € E. The sirong topology on E' is denoted by §; it
is generated by the family of seminorms

ru(@') := sup |¢!(p)], ¢'€ B,
peM

where M ranges over the bounded subsets of E. The vector space £ becomes a linear
subspace of (E'[f])! by identifying ¢ € E with the linear functional ¢' — ¢!(p) on E'.
I is semireflexive if I = (E'[f])! under this identification, and E is reflexive if K is
semireflexive and if the topology of E coincides with the strong topology on (£'[8])'.

A Frechet space is a complete metrizable locally convex space. The locally convex
space E is said to be a quasi-Frechet space (or briefly, a QF-space) if for every bounded
set M in E there is a subspace  of £ which is a Frechet space in the induced topology
of E and which contains M. It is obvious that each Frechet space is a QF-space.

The space E is barrelled if every barrel in E (i.e., every closed absolutely convex absor-
bing subset of K) is a 0-neighbourhood in E. E is a semi-Montel space if each bounded
subset of E is relatively compact. A Montcl space is a barrelled semi-Montel space.
The space E is bornological if every absolutely convex set in £ that absorbs each bounded
set in K is a 0-neighbourhood of E. The bornological topology associated with the topology
of E is the coarsest bornological topology on E which is finer than the topology of E.

A fundamental system of bounded sets in £ is a family S of bounded sets such that
every bounded subset of K is contained in some set of S. The space £ is a DF-space
if it admits a countable fundamental system of bounded sets and if it has the following
property : 1f the intersection of a sequence of closed absolutely convex 0-neighbourhoods
in E absorbs all bounded sets, then it is itself a 0-neighbourhood in E.

A precompact set in E is a set which is relatively compact in the completion of E.
(Often these sets are called totally bounded.)
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Lemma 1.1.1. Let T be a directed family of seminorms which generates the topology of E,
and let M be a subset of E. Suppose that, given p € I and & > 0, there exists a bounded set
M, . contained in a finite dimensional subspace of E such that for each @ € M there is a
v € M, satisfying p(p — y) = &. Then M is a precompact set in E.

Proof. Without loss of generality we can assume that E is already complete and M, ,
is closed. We have to show that the closure M of M is compact. For let W be an ultra-
filter on M. Fix p € I'and ¢ > 0. Set V := {p € E: p(p) =< ¢}. The set M, . is compact,
so there exists a finite set N in E such that M,. & N + V. By assumption,
Mc M, .+ V. The set M, .+ V is closed in E (because M, . is compact). Hence
McM, +VESEWN+V)+V=N+2V=U (p+ 2V). Because W is an ultra-

N
filter, this implies that (y + 2V) € W for some y :PeeN. Since (p + 2V) — (p + 2V) =4V
and the sets 4V form a 0-neighbourhood base on E, this shows that W is a Cauchy filter
on E. Hence W is convergent and M is compact. O

The locally convex space B admits the approximation property if the identity map of
E can be approximated, uniformly on every precompact subset of K, by continuous
linear mappings of finite rank.

Suppose that the topology of F is generated by a directed family, say I', of norms
on E. Then E is called a Schwartz space if for every p € I' there is a ¢ € I" such that the
set {p € E: q(p) < 1} is precompact in the normed linear space (X, p).

Let E and F be locally convex Hausdorff spaces. We define the two main topologies
on the algebraic tensor product £ R F of E and F. For seminorms p and ¢ on E and
F, respectively, let p &, ¢ denote the seminorm on E & F which is defined by

k
p ®uale) = inf{ 5" olps) q(wn)}, e EQF,

n=1

k

where the infimum is taken over all representations z = } ¢, ® v, in E & F. Suppose
n=1

I'y and I'y are directed families of seminorms which generate the topologies of £ and F,

respectively. The projective tensor topology on E ) F is defined by the family of semi-

norms {p X, q:p € I'yand ¢ € I'r}. Equipped with it, the space F & F is.called the
projective tensor product and denoted by F &, F. Let E @,,F be the completion of
E X, F. We denote by E(E) and E(F) the equicontinuous subsets of E' and F', respec-
tively. For M € E(E) and N € E(F), let

k
2 @ n) v'(wa)

n=1

ey, n(z) 1= sup sup
@'eM y'eN

k
> R = 2: Pn 5@ Yn €E.
n=1

The injective tensor topology is generated by the family of seminorms {e; y: M € E(E)
and N € E(F)}. The injective tensor product E X, F is the vector space £ & F endowed
with this topology. The completion of £ &, /' is denoted by £ ®\, F.

The following result is occasionally called the Mittag-Leffler theorem.

Lemma 1.1.2. Let (H,:n € N,) be a sequence of Banach spaces. Suppose that for each
n € Ny, H,.1 is a dense linear subspace of E, and the embedding map of E, ., into B, is
continuous. Then E_ := N B, is dense in each space Ey, k € N,.

neN,
Proof. There is no loss of generality to assume that £ = 0. Suppose ¢ € E, and & >0
Let ||-|l,, » € N, denote the norm of E,. Since the embedding of #,,, into K, is con
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tinuous, there exists a constant x, > 0 such that ||-|l, < &u||*|lsss On E,yy for » € No.
Upon replacing ||-|l, by ®; ... y_; ||-|ln for » € N, we can assume without loss of gen-
erality that || |, < ||-|l.s: for n € IN,. Set ¢, := @. Since E,,, is dense in E,, we can
construct inductively a sequence (g, : 7 € IN,) of elements ¢, € E, such that [lp,; —@ullan
< ¢271 for n € N,. Then we have

A

”‘pm+n+r - ‘pm-}—n”m g Z ||(Pm+n+l - ‘pm+n+lfll|m é
=1

2 N@mintt — Pminttoallminns = 'Zl‘ g2-oal o gire (1)
=1 =
for m,n € N, and r € N. From this we conclude that the sequence (@,.,: 7 € Np)
is a Cauchy sequence in the Banach space E,,, m € Ny. Let p denote the limit of the
sequence (@g.,:n € Np) in Ey. Then, of course, y is also the limit of (@,.,: 7 € Ny) in
E,, for all m € N,. Hence y € E . Setting m = n = 0 and letting r — + oo in (1),
we obtain ||y — ¢|lp = ¢ which shows that £ is dense in E,. []

1.2.  Spaces of Linear Mappings and Spaces of Sesquilinear Forms

First let £ and F be vector spaces. We denote by E~ the complex conjugate vector space
of E. That is, E- is equal to E as a set, the addition in E- is the same as in E, but the
multiplication by scalars is replaced in B~ by the mapping (4, ¢) — ip, 4 € C and ¢ € E.
Let L(E, I') be the vector space of all linear mappings of £ into F, and let B(#, F) denote
the vector space of all sesquilinear forms on E X F. We set L(E) := L(HE, E) and B(E)
:= B(E, E). A sesquilinear form on E X F is a mapping of £ X F into € which is linear
in the first and conjugate linear in the second variable. For ¢ € B(E, F), define ¢*(p, ¢)

=c(p,y), ¢ € £ and y € F; then ¢t € B(F, E). If ¢ € B(E, E) and ¢, p € E, then we
have the so-called polarization identity

dc(p,p) =clp + v, 0 +y) —clg — v, ¢ — ) + ic(p + iy, ¢ + ip)
—ic(p — iy, ¢ — ip). (1)

It is proved by computing the right-hand side of (1).

From now on we assume in this section that £ and F are locally convex spaces. Since
the vector spaces £ and £~ have the same convex sets, they have the same locally convex
topologies. We also denote by £~ the vector space £~ equipped with the topology of E.
We shall write E* for the conjugate vector space (£')~ of the dual E' of E. Let &(E, F)
denote the vector space of continuous linear mappings of £ into F. Set &(E) := (&, E).

A sesquilinear form ¢ on E X F is said to be separately continuous if ¢(p,-) € F' for each
@ € B and ¢(-, y) € B for each y € F; c is called continuous if it is a continuous mapping
of B x Finto C, when B X F carries the product topology. We denote the vector spaces
of all separately continuous sesquilinear forms and of all continuous sesquilinear forms
by B(E, F') and B(E, F), respectively. From the theory of locally convex spaces (see
ScHAFER [1], 111, 5.1) it is known that B(E, F) = B(E, F) if £ and F are Frechet spaces
or if £ and F are barrelled (DF)-spaces.



