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Preface

Over the past several years, the computational methods available to engi-
neers have greatly expanded. This, together with the fact that a greater
number of engineers use digital computers, has made it desirable to com-
pile the numerical methods applicable to the solution of engineering prob-
lems under one cover.

This text is written on a senior or graduate level for students of engi-
neering and practicing engineers. The basics of numerical analysis and
computational methods are covered in the first three chapters. These
chapters consist of numerical evaluation of matrices and simultaneous
equations, calculus of finite differences, and numerical solution of differ-
ential equation.

Chapters 4 and 5 cover the basics of probability theory and the least
squares methods and estimates. Chapter 4 gives a brief review of prob-
ability methods and theorems which are applicable to the digital simula-
tion of probabilistic problems. In addition, this chapter prepares the read-
er for the discussion of least squares methods and estimates given in the
next chapter. Chapter 5 starts with a discussion of classical least squares
polynomial fits and proceeds to cover recursive trackers, linear least
square methods, and Kalman filtering.

Chapters 6, 7, and 8 discuss various numerical methods of special in-
terest. Chapter 6 gives a discussion of Fourier series and transforms and
follows this with computational methods and algorithms. Chapter 7 cov-
ers some of the currently used optimization methods, such as linear pro-
gramming, quadratic programming, and nonlinear programming methods.
Chapter 8 gives several numerical methods for the computation of charac-
teristic values and vectors.

In the use of the book as a text, the first three chapters are basic to a
knowledge of numerical methods and should be covered. Additional ma-
terial from Chapters 4 through 8 may be included, depending on the orien-
tation of the class. For example, for students of electrical engineering, the
material of Chapters 4, S, and 6 is desirable, while for students of civil and
mechanical engineering, Chapters 6, 7 and 8 may be appropriate.

Each chapter contains about twenty problems, with answers to every
problem given at the end of the book. A solution book will also be pro-
vided by the author to instructors upon written request.

S.A. Hovanessian

Los Angeles, California
April 1976
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Numerical Evaluation of
Matrices and Simultaneous
Equations

Matrices form an important branch of mathematics, as they are the logical
extension of vectors. Vectors can be considered as one-dimensional ma-
trices while matrices, in their usual representation, are considered as two
dimensional. Higher dimension (more than two) matrices are replaced by
tensors. Thus, vectors and matrices can be considered one- and two-di-
mensional tensors, respectively.

In applied mathematics matrices are encountered in the solution of si-
multaneous equations, numerical solution of boundary value differential
equation, numerical solution of partial differential equations, and in a
number of problems in electrical circuits and mechanical vibrations. The
formulation of many engineering problems for numerical solution results
in a set of simultaneous linear equations which can be solved using matrix
methods and digital computers.

This chapter discusses some useful properties of matrices and will give
several numerical methods for the evaluation of matrices and simulta-
neous linear equations.

Some Matrix Properties

1. Multiplication of some row i of an nth order matrix by a constant « is
equivalent to premultiplication of the matrix by

(1.1



where the above matrix is an nth order unity matrix with the element
of the ith row, ith column replaced by a. As an example, consider the
multiplication of the second row of the third-order matrix

a b ¢
Xy z (1.2)
u v w

by a. This can be written as

1 0 0 a b c a b c
0 aa 0 X y z =|ax ay az (1.3)
0 0 1 u v w u v w

. Consider an nth order matrix. Adding to the elements of some row (i)
numbers proportional to the elements of some preceding row (j) is
equivalent to the premultiplication of the matrix by

i a ... 1 (1.4)

1

where the above matrix represents an nth order unity matrix with the
element of the ith row and jth column replaced by the proportionality
constant . As an example, consider the third-order matrix of equation
(1.2). Let it be required to multiply the elements of the second row of
this matrix by « and add these to the elements of the third row. This
can be accomplished as follows:



1 00 a b c a b c
010 xy z |= x y z (1.5)
0 o 1 u v w y+ax vtay wtaz

3. Consider an nth order matrix. Addition to the elements of some row (i)
numbers proportional to the elements of some following row (j) is
equivalent to premultiplication of the matrix by

l1...a... ... i (1.6)

1

where the above matrix represents an nth order unity matrix with the
element in row (i) column (j) replaced by the proportionality constant
a. As an example, consider the multiplication of the third row of the
matrix of equation (1.2) by « and the subsequent addition of this row to
the second row. This can be accomplished by matrix multiplication

1 0 0 a b ¢ a b c
0 1 « Xy z = |x+tau yt+tav z+aw (1.7)
0 0 1 u v w u v w

Upper and Lower Triangular Matrices

Consider the following third-order triangular matrices



cn 0 O by by by
Cay Ca O 0 by bog (1.8)
Cai C3z Caz 0 0 by
lower triangular upper triangular
matrix matrix

where the lower triangular matrix is defined as a matrix with zero ele-
ments above the diagonal and the upper triangular matrix is defined as a
matrix with zero elements below the diagonal. With these definitions, we
consider the following methods based on the utilization of triangular ma-
trices. These methods, for ease of understanding, are described using
third-order matrices. The methods, of course, can be generalized to high-
er order matrices.

Theorem: On the condition that the leading submatrices of the matrix

ap Gz Qg3
A= Az Qe Qg (1-9)

Aasy dge dgg
are nonsingular, i.e.,

dir diz
a;y # 0, #0,...,[A]# 0 (1.10)

dz Az

matrix A may be represented by the product of lower and upper triangular
matrices. In equation (1.10), brackets represent determinants of the lead-
ing submatrices of (1.9). These submatrices start with the element of row
1 column 1 and proceed to the second- and third-order matrices along the
diagonal of the original matrix A.

Denoting the lower and upper triangular matrices of A by L and U, re-
spectively, we have

A=LU
A=(ay) L=y U= (uy (1.11)
mingi, j)
Ay = 2 Lixc s
k=1

In the above notation a;; represents the element of row i column j of ma-
trix A. The lowercase letters are used to denote matrix elements and up-
percase letters are used to denote matrices. Note that we will have 52



equations in n* + n unknowns u;; and /;;. Our latitude lies in the specifying
of the diagonal coefficients /; or u; as seen in the example below.

Example: For a3 X 3 matrix we have

ay diz dig Ly 0 0 Uy Uiz Usg
dz1 dzz QA = lyy Il O 0 Ugp  Uzg (1.12)
dzy dszz dss l31 I3 I3s 0 0 Uss

where the A matrix is represented as the product of the lower and the up-
per triangular matrices L and U. Performing the matrix product of (1.12)
and equating the resulting matrices term by term, we get the set of equa-
tions

ay = lyg Uy Az = Iy Uy,
ay = ly1 Ugp Agp = gy s + lgo Upy (1.13)
a3 = lig Uy3 aaz =

By selecting values of [,,, I,, and /5, the rest of the values of the triangular
matrices can be computed.

Furthermore, the inverse of lower and upper triangular matrices have
the same form. For example, the inverse of a lower triangular matrix will
also be a lower triangular matrix, as shown below for a third-order matrix

111 0 0 X11 0 0 1 0 0
Iy Ly O || x00 22 0 J=]0 1 0 (1.14)
Isn lse I3 X31 X3z Xsg 0 0 1

Assuming that we already have calculated the elements /4, I, . . . of the
lower triangular matrix, we can perform the above matrix multiplication
and obtain a set of equations for the calculation of the elements of the in-

verse matrix x,;, Xs;, Xs3, - - . L his results in
Liwxy=1
lo1x11 + lpoxsy = 0 (1.15)

Iaix11 + lgoxay + l33x3, = 0
lagxae = 1
l39X29 + l33x32 = 0 (1.16)
lsgxgs =1 (1.17)



