

Physical Geology

Plummer/McGeary

P5
P735
E-3

Third Edition

Physical Geology

Plummer/McGeary

California State University, Sacramento

wcb

Wm. C. Brown Publishers Dubuque, Iowa

Wm. C. Brown Chairman of the Board Mark C. Falb President and Chief Executive Officer

Book Team

Photo Research Editor

Edward G. Jaffe
Senior Editor
Lynne M. Meyers
Associate Editor
John Mulvihill/Mary Jean Gregory
Production Editors
Mark Elliot Christianson
Senior Designer
Mavis M. Oeth
Permissions Editor
Shirley M. Charley

web

Wm. C. Brown Publishers College Division

Lawrence E. Cremer President James L. Romig Vice-President, Product Development David A. Corona Vice-President, Production and Design E. F. Jogerst Vice-President, Cost Analyst Bob McLaughlin National Sales Manager Marcia H. Stout Marketing Manager Craig S. Marty Director of Marketing Research Eugenia M. Collins Production Editorial Manager Marilyn A. Phelps Manager of Design Mary M. Heller

Photo Research Manager

Cover: Monument Valley, Utah, by Wolfgang Klein/ The Image Bank, Chicago

Copyright © 1979, 1982, 1985 by Wm. C. Brown Publishers. All rights reserved

Library of Congress Catalog Card Number: 84-71808

ISBN 0-697-05046-7

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Physical Geology

Preface

This third edition of *Physical Geology* is a straight-forward, easy-to-read introduction to geology for both geology majors and nonmajors. The organization of the book is traditional and matches the organization of most lab manuals. Each chapter has been written to be as self-contained as possible so that the instructor can reorganize the chapter sequence if desired.

Most of the changes in this edition are in the illustrations. The artwork and labels for many of the line drawings have been improved and several new line drawings have been added. These changes should be particularly noticeable in the chapters on geologic time, rivers, beaches, and mountains and continents. We have changed many photographs and added several new ones. The introductory chapters on rocks contain many new photos of hand specimens. New photos of landscape features (including several photos by John S. Shelton) improve many chapters, especially those on geologic time, mass wasting, rivers, glaciers, deserts, and beaches.

We have rewritten several sections of the book to make them more readable and have reduced the number of boldface "terms to remember."

We have changed the order of three chapters near the end of the book at the request of many of you who use the book. Chapter 18 now describes sea-floor features and sedimentary processes but does not discuss sea-floor spreading. Chapter 19 shows how plate tectonics was derived from the concepts of continental drift and sea-floor spreading. It discusses the *origin* of those sea-floor features *described* in the previous chapter. Chapter 20 describes mountains and continental crust as a result of plate tectonics, including the accretion of "suspect terranes." Also in this chapter is a new box on the thin-skinned tectonics of the southern Appalachians, as interpreted from

recent COCORP profiles. We (and several adopters) feel that this new organization presents relatively difficult material in a new, logical sequence.

The boxes within the text are of two types: (1) topics of special human or environmental concern, such as the dangers of living in river cities or the amount of fresh water stored in glacial ice; and (2) topics slightly more difficult than the rest of the text, such as the electrostatic charge on clay minerals. The boxed material, while informative and interesting, should be considered supplemental to the text.

Physical Geology is accompanied by an instructor's manual, student study guide, and a laboratory manual. The Instructor's Manual, written by the authors of the text, gives specific learning objectives for the twenty-two chapters in the text as well as numerous suggestions for demonstrations, discussions, lab experiments, and exam questions. The manual also suggests course outlines and a lab schedule and provides lists of suppliers of films, slides, rocks and minerals, and information for the course as a whole.

The Student Study Guide provides a solid foundation for a beginning geology student. Written by Esther Tuttle, a science editor, and Sherwood D. Tuttle, professor of geology at the University of Iowa, the guide stresses the fundamentals of geology, the vocabulary of the science, and the techniques for successful learning in the field of geology.

The Laboratory Manual, by James Zumberge and Robert Rutford, has been especially designed to be used with *Physical Geology*. It presents a good selection of experiments for use in the laboratory.

xiii

We have tried to write a book that will be useful to both students and instructors. We would be grateful for any comments by users, especially regarding mistakes within the text or sources of good geological photographs.

Charles C. Plummer
David McGeary
Geology Department
California State University, Sacramento
Sacramento, CA 95819

Acknowledgments

Susan Clark Slaymaker, of the Geology Department of California State University, Sacramento, wrote chapter 22, "Astrogeology," in *Physical Geology*. We are grateful for her assistance.

The successful completion of *Physical Geology* is largely due to the efforts of our reviewers, who gave us invaluable advice and guidance throughout the writing and revision of the manuscript. We extend our special thanks and appreciation to those who reviewed all or part of the manuscript, including Richard Smosna, West Virginia University; Greg S. Conrad, Sam Houston State University; Stephen H. Watts, Sir Sandford Fleming College; Barry Haskell, Los Angeles Pierce College; and Charles R. Singler, Youngstown State University.

Contents

Boxes xi Preface xiii

Introduction to Physical Geology 1

Purpose 1

The Earth: A Giant Machine 2

Understanding Our Surroundings/Supplying Things
We Need/Protecting the Environment/Avoiding
Geologic Hazards

An Overview of Physical Geology 9
Internal Processes: How the Earth's Internal Heat
Engine Works/The Earth's Interior/The Theory of
Plate Tectonics/Surficial Processes: The Earth's
External Heat Engine and the Hydrologic Cycle/The
Rock Cycle and Equilibrium

Uniformitarianism
Summary 19
Terms to Remember 20
Questions for Review 20
Questions for Thought 20
Supplementary Readings 20

Geologic Time 18

Atoms, Elements, and Minerals 21

Purpose 21
Atoms and Elements 22
Chemical Activity/Ions/Bonding
Chemical Composition of the Earth's Crust 25
The Silica Tetrahedron

Minerals 30

Crystalline Solids/Natural and Inorganic Substances/
Definite Chemical Composition/Physical Properties/
The Important Minerals

The Physical Properties of Minerals 32

Color/Streak/Luster/Hardness

External Crystal Form/Cleavage/Fracture/Specific
Gravity/Other Properties/Simple Chemical Tests

Summary 41
Terms to Remember 41
Questions for Review 41
Questions for Thought 42
Supplementary Readings 42

Volcanism and Extrusive Rocks 43

Purpose 43 Volcanism 48

Effects on Humans/Eruptive Violence and Physical Characteristics of Lava/Scientific Investigation of Volcanism/Chemistry of Volcanic Rocks/Viscosity of Lava

Types of Volcanoes 52
Shield Volcanoes/Cinder Cones/Composite
Volcanoes/Volcanic Domes

Lava Floods 59
Submarine Eruptions 60
Pillow Basalts
Identification of Extrusive Rocks 63

Composition/Textures
The Source of Lava 65
Plate Tectonics and the Origin of Basalt/Plate
Tectonics and the Origin of Andesite

Summary 69 Terms to Remember 70 Questions for Review 70
Questions for Thought 70
Supplementary Readings 70

Intrusive Activity and the Origin of Igneous Rocks 71

Purpose 71
Intrusive Bodies 73
Shallow Intrusive Structures/Intrusions That
Crystallize at Depth
Identification of Intrusive Igneous Rocks 77
Ultramafic Rocks/Varieties of Granite
Abundance and Distribution of Plutonic Rocks 80
How Magma Forms 81
Sources of Heat for Melting/Factors That Control
Melting Temperatures
Theories About the Origin of Magmas 82
Differentiation and Bowen's Reaction Theory/

Assimilation/Mixing of Magmas/Partial Melting
Explaining Igneous Activity by Plate Tectonics 87
The Origin of Basalt and Ultramafic Rocks/The Origin
of Granite and Andesite

Summary 89
Terms to Remember 90
Questions for Review 90
Questions for Thought 90
Supplementary Readings 90

Weathering and Soil 91

Purpose 91

How Weathering Alters Rocks 92

Effects of Weathering

Mechanical Weathering 95

Frost Action/Abrasion/Pressure Release

Chemical Weathering 98

Role of Oxygen/Role of Acid/Solution Weathering 98

Role of Oxygen/Role of Acid/Solution Weathering/ Chemical Weathering of Feldspar/Chemical Weathering of Other Minerals

Soil 101

Soil Horizons/Residual and Transported Soils/Soils, Parent Rock, and Time/Soils and Climate

Summary 105
Terms to Remember 105
Questions for Review 105
Questions for Thought 106
Supplementary Readings 106

Sediments and Sedimentary Rocks 107

Purpose 107 Some Lengthy Definitions 108 Sediment/Lithification/Sedimentary Rock Sediment 108 Transportation/Deposition Types of Sedimentary Rocks 110 Clastic Sedimentary Rocks/Chemical and Organic Sedimentary Rocks Sedimentary Structures 117 Interpretation of Sedimentary Rocks 120 Source Area/Paleogeography/Environment of Deposition Sedimentary Facies 125 Summary 126 Terms to Remember 127 Questions for Review 127 Questions for Thought 127 Supplementary Readings 127

Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks 129

Purpose 129
Factors Controlling the Characteristics of Metamorphic Rocks 131

Composition of the Parent Rock/Temperature/ Pressure/Foliation/Effects of Fluids/Time Classification of Metamorphic Rocks 135

Types of Metamorphism 136

Contact (Thermal) Metamorphism/Regional (Dynamothermal) Metamorphism/Intensity of Metamorphism

Plate Tectonics and Metamorphism 140 Hydrothermal Processes 141

Metasomatism/Hydrothermal Rocks/Sources of Water

Summary 143
Terms to Remember 145
Questions for Review 145
Questions for Thought 145
Supplementary Readings 146

Time and Geology 147

Purpose 147
The Key to the Past 148
Relative Time 149
 Principles Used to Determine Relative Age/
 Correlation/The Standard Geologic Time Scale
Absolute Age 158
 Radioactive Dating
Combining Relative and Absolute Ages 161
Summary 163
Terms to Remember 164
Questions for Review 164
Questions for Thought 164
Supplementary Readings 164

Mass Wasting 165

Purpose 165
Classification of Mass Wasting 167
Rate of Movement/Type of Material/Type of
Movement
Controlling Factors in Mass Wasting 168
Water
Common Types of Mass Wasting 171
Creep/Earthflow/Mudflow/Rockfall/Rockslide/Debris
Slides, Falls, and Avalanches
Summary 182
Terms to Remember 182
Questions for Review 182
Questions for Thought 182
Supplementary Readings 182

Streams, Stream Action, and Landscape Development 183

Purpose 183
Channel Flow and Sheet Flow 184
Drainage Basins 185
Drainage Patterns 187
Longitudinal Profile 187
Factors Affecting Stream Erosion and Deposition 187
Velocity/Gradient/Channel Shape and Roughness/
Discharge

Stream Erosion 191 Stream Transportation of Sediment 192 Stream Deposition 193 Bars/Braided Streams/Meandering Streams and Point Bars/Meandering Versus Braiding/Flood Plains/ Deltas/Alluvial Fans Valley Development 202 Downcutting and Base Level/The Concept of a Graded Stream/Lateral Erosion/Headward Erosion Slope Development and Regional Erosion 205 Two Stream Features That Are Difficult to Interpret 209 Stream Terraces/Incised Meanders Summary 211 Terms to Remember 212 Questions for Review 212 Questions for Thought 212 Supplementary Readings 212

Ground Water 213

Purpose 213 The Hydrologic Cycle 214 Porosity and Permeability 214 The Water Table 214 The Movement of Ground Water 215 Springs and Rivers 216 Aguifers 217 Wells 218 Artesian Aquifers and Wells Pollution of Ground Water 220 Balancing Withdrawal and Recharge 221 Effects of Ground-Water Action 222 Caves, Sinkholes, and Karst Topography/Other **Effects** Hot Water Underground 224 Geothermal Energy Summary 229 Terms to Remember 229 Questions for Review 229 Question for Thought 230 Supplementary Readings 230

Glaciers and Glaciation 231

Purpose 231
The Theory of Glacial Ages 232
Glaciers—Where They Are, How They Form and
Move 233

Distribution of Glaciers/Types of Glaciers/Formation and Growth of Glaciers/Movement of Valley Glaciers/ Movement of Ice Sheets

Glacial Erosion 238

Erosional Landscapes Associated with Alpine Glaciation/Erosional Landscapes Associated with Continental Glaciation

Glacial Deposition 244

Moraines/Outwash/Glacial Lakes and Varves

Effects of Past Glaciation 248

The Glacial Ages/Direct Effects of Past Glaciation in North America/Indirect Effects of Past Glaciation/ Evidence for Older Glaciation

Summary 254
Terms to Remember 255
Questions for Review 255
Questions for Thought 256
Supplementary Readings 256

Deserts and Wind Action 257

Purpose 257
Distribution of Deserts 258
Some Characteristics of Deserts 258
Desert Features in the Southwestern United States 261
Wind Action 265
Wind Erosion and Transportation/Wind Deposition
Summary 270
Terms to Remember 272
Questions for Review 272
Questions for Thought 272
Supplementary Readings 272

Waves, Beaches, and Coasts 273

pasts 273 2 273 Vaves 274

Purpose 273
Water Waves 274
Surf
Nearshore Circulation

Nearshore Circulation 275

Wave Refraction/Longshore Currents

Beaches 277

Longshore Drift of Sediment 278

Human Interference with Sand Drift/Sources of Sand on Beaches

Coasts and Coastal Features 281

Classification of Coasts/Coastal Landforms

Summary 285

Terms to Remember 285

Questions for Review 285

Questions for Thought 285

Supplementary Readings 286

Geologic Structures 287

15

Purpose 287

Tectonic Forces at Work 288

Stress and Strain/Stress and Strain of Bed Rock

Structures as a Record of the Geologic Past 290
Implications of Horizontal and Inclined Layers of
Rock/Geologic Maps and Field Methods

Folds 293

Geometry of Folds/Interpreting Folds

Fractures in Rock 299

Joints/Faults

Unconformities 307

Disconformities/Angular Unconformities/

Nonconformities

Summary 308

Terms to Remember 310

Questions for Review 310

Questions for Thought 310

Supplementary Readings 310

Earthquakes 311

16

Purpose 311

Causes of Earthquakes 312

Seismic Waves 313

Locating and Measuring Earthquakes 313

Seismographs and Seismograms/Determining the Location of an Earthquake/Earthquake Strength/

Earthquakes in the United States

Effects of Earthquakes 321

Tsunamis

Distribution of Earthquakes 324

First-Motion Studies of Earthquakes 326

Earthquakes and Plate Tectonics 327

Earthquakes at Plate Boundaries/Subduction Angle

Earthquake Prediction 331

Earthquake Control 332

Summary 333

Terms to Remember 334

Questions for Review 334

Questions for Thought 334

Supplementary Readings 334

The Earth's Interior 335

7

Purpose 335

Evidence from Seismic Waves 336

The Earth's Internal Layers 337

The Earth's Crust/The Mantle/The Core

Isostasy 341

Gravity Measurements 344

The Earth's Magnetic Field 345

Magnetic Reversals/Magnetic Anomalies

Heat Within the Earth 348

Geothermal Gradient/Heat Flow

Summary 350

Terms to Remember 350

Questions for Review 351

Questions for Thought 351

Supplementary Readings 351

The Sea Floor 353

Purpose 353 Methods of Studying the Sea Floor 354 Features of the Sea Floor 357 Continental Shelves and Continental Slopes Submarine Canyons 358 **Turbidity Currents** Passive Continental Margins 360 The Continental Rise/Abyssal Plains Active Continental Margins 361 Oceanic Trenches The Mid-Oceanic Ridge 362 Geologic Activity on the Ridge Fracture Zones 363 Seamounts, Guyots, and Aseismic Ridges 364 Sediments of the Sea Floor 364 Oceanic Crust and Ophiolites 366 The Age of the Sea Floor 366 Summary 368 Terms to Remember 368 Questions for Review 368 Questions for Thought 369 Supplementary Readings 369

Plate Tectonics 371

Purpose 371
The Early Case for Continental Drift 372

The Ideas of Alfred Wegener/Skepticism about Continental Drift Paleomagnetism and the Revival of Continental Drift 376 Additional Evidence for Continental Drift/History of Continental Positions Sea-Floor Spreading 379 The Driving Force/Explanations Plates and Plate Motion 381 How Do We Know That Plates Move? 382 Marine Magnetic Anomalies/Another Test: Fracture Zones and Transform Faults Diverging Plate Boundaries 386 Oceanic Divergence/Continental Divergence Converging Plate Boundaries 391 Ocean-Ocean Convergence/Ocean-Continent Convergence/Continent-Continent Convergence Transform Boundaries 398 Plate Size 398 The Attractiveness of Plate Tectonics 400 What Causes Plate Motions? 401 Mantle Convection/Plumes and Hot Spots A Cautionary Note 405 Summary 406 Terms to Remember 407 Questions for Review 407 Question for Thought 408

Mountain Belts and the Continental Crust 409

Supplementary Readings 408

20

Purpose 409

Characteristics of Major Mountain Belts 411
Size and Alignment/Ages of Mountain Belts and
Continents/Thickness of Rock Layers/Patterns of
Folding and Faulting/Metamorphism and Plutonism/
Episode of Normal Faulting/Thickness and Density of
Rocks/Features of Active Mountain Ranges
The Evolution of a Mountain Belt 417

The Accretion Stage/The Orogenic Stage/Uplift and Block-faulting Stage

The Growth of Continents 426

Summary 427

Terms to Remember 429

Questions for Review 429

Questions for Thought 429

Supplementary Readings 429

Geologic Resources 431

Purpose 431 Types of Resources 432 Energy Use 433 Petroleum and Natural Gas 433 The Origin of Oil and Gas/The Occurrence of Oil and Gas/Recovering the Oil/How Much Oil Do We Have Left?

Heavy Crude and Tar Sands 439 Oil Shale 439 Coal 440

> Origin of Coal/Occurrence of Coal/Environmental Effects/Reserves and Resources

Uranium 443

Metals and Ores 444

Origin of Metallic Ore Deposits 444

Ores Associated with Igneous Rocks/Ores Formed by Surface Processes

Metal Ores and Plate Tectonics 447

Mining 450

Environmental Effects

Some Important Metals 451

Iron/Copper/Aluminum/Lead/Zinc/Silver/Gold/Other Metals

Nonmetallic Resources 453

Construction Materials/Fertilizers and Evaporites/ Other Nonmetallics

Substitutes, Recycling, and Conservation 455

Some Future Trends 455

Summary 455

Terms to Remember 456

Questions for Review 456

Question for Thought 456

Supplementary Readings 456

Astrogeology 457

Purpose 457 The Sun 458 The Sun's Structure The Planets 459 The Asteroids 459 Comets 459 Satellites and Rings 460 Meteors and Meteorites 460 Effects of Impact/Classification

The Moon 461 Surface Features/Lunar Minerals/Lunar Rocks/The Moon's Interior

Mercury 464 Venus 465

Surface Features/The Atmosphere of Venus/ Venusian Rocks

Mars 466

Surface Features/The Martian Atmosphere and Wind Activity/Polar Regions/Martian Rocks/The Martian Interior/Life on Mars?/Mars's Moons

The Jovian Planets 470 The Satellites of Jupiter and Saturn 471 The Origin of the Solar System 473 A Short History of the Terrestrial Planets 473 Summary 474

Terms to Remember 475 Questions for Review 475

Questions for Thought 475

Supplementary Readings 475

Appendix A Identification of Minerals 477 Appendix B Identification of Rocks 481 Appendix C The Elements Most Significant to Geology 486 Appendix D Periodic Table of Elements 488 Appendix E Selected Conversion Factors 489 Appendix F Rock Symbols 490 Glossary 491 Index 509

Boxes

- **Box 1.1** The Alaska Pipeline—Threat to the Environment or Bulwark of the American Economy? 8
- **Box 1.2** Plate Tectonics and the Scientific Method 15
- **Box 2.1** Our Largest Nuclear Power Plant—The Sun 26
- **Box 2.2** Diamonds—Expensive and Unscratchable 33
- Box 2.3 On Time with Quartz 40
- **Box 3.1** Eruption of Mount St. Helens, 1980 44
- **Box 3.2** An Icelandic Community Battles a Volcano—And Wins 61
- **Box 4.1** Pegmatite—A Rock Made of Giant Crystals 79
- **Box 4.2** Harnessing Magmatic Energy—A Solution to the Energy Crisis? **86**
- **Box 5.1** Hard Water and Soapsuds 100
- **Box 5.2** Clay Minerals and Plant Growth 102
- **Box 6.1** Pore Space, Water, and Oil 113
- **Box 6.2** Sedimentary Rocks Worth Money 117
- Box 6.3 Naming of Rock Units 122
- **Box 7.1** Failure of the St. Francis Dam—A Tragic Consequence of Geology Ignored 134
- **Box 7.2** The United States' Largest Man-made Hole—The Bingham Canyon Copper Mine 144

- **Box 8.1** Sedimentary Rock Layers That Transgress Time 156
- **Box 8.2** The Longest Movie Never Shown—The Earth's Story 162
- Box 9.1 Disaster in the Andes 166
- **Box 9.2** Preventing Downslope Movement of Soil 170
- **Box 9.3** Los Angeles, A Mobile Society 175
- **Box 9.4** Preventing Rockfalls and Rockslides on Highways 181
- **Box 10.1** Preventing Sheet Erosion on Farms 186
- Box 10.2 River Cities 199
- **Box 11.1** Prospecting for Ground Water **219**
- **Box 12.1** Glaciers as a Water Resource 233
- Box 12.2 To Mars on a Glacier 239
- **Box 12.3** Causes of Glacial Ages 249
- Box 13.1 Desert Varnish 268
- **Box 14.1** Rip Currents—A Common Cause of Drowning **276**
- **Box 15.1** Is There Oil Beneath My Property?—First Check the Geologic Structure 298
- **Box 15.2** Faults and Nuclear Power Plants 301
- **Box 15.3** California's Greatest Fault— The San Andreas **304**

- **Box 16.1** Earthquakes in the Eastern United States—Rare but Occasionally Strong 332
- Box 18.1 Vertical Exaggeration 357
- **Box 18.2** Geologic Riches in the Sea 367
- Box 19.1 Backarc Spreading 399
- **Box 19.2** Plate Tectonics and Sea Level 401
- **Box 20.1** Ultramafic Rocks in Mountain Belts—From the Mantle to Talcum Powder 416
- **Box 20.2** Geosynclines and Geoclines 420
- **Box 20.3** Thin-skinned Tectonics 423
- Box 21.1 Salt Domes 435
- **Box 21.2** Alternative Sources of Energy 443

Introduction to Physical Geology

Purpose

Geology uses the scientific method to explain natural aspects of the earth—for example, how mountains form and valleys develop, or why oil resources are concentrated in some rocks and not in others. This chapter briefly explains how and why the earth's surface, and its interior, are constantly changing. It relates this constant change to the major geological topics of the modern theory of plate tectonics, the rock cycle, and geologic time. These concepts form a framework for the rest of the book. Understanding them will aid you in studying the chapters that follow.

Figure 1.1 Mount St. Helens before May 18, 1980, A minor eruption is taking place. Photo by U.S. Geological Survey.

The Earth: A Giant Machine

In March 1980, after over a century of inactivity, Mount St. Helens in the state of Washington came to life. For six weeks the eruptions were relatively minor (figure 1.1). A series of steam explosions puffed out fragments of old rock. Then on May 18, 1980, the once beautifully symmetrical, snow-capped cone blew apart with a force equal to about 10 million tons of dynamite exploding—500 times the energy released by the first atomic bomb (figure 1.2).

As the north flank of the peak disintegrated, a huge avalanche composed of volcanic ash and searingly hot gases roared downward. This was followed by a tremendous lateral blast of steam and ash from the flank of the volcano, destroying about 600 square kilometers of forest. Great volumes of volcanic debris billowed into the atmosphere to be carried eastward by the prevailing winds (figure 1.3). During the next few days large parts of Montana, Idaho, and eastern Washington were blanketed by volcanic ash

Figure 1.2 Mount St. Helens, June 4, 1980. View of what once was the northern flank of the volcano. Photo by U.S. Geological Survey.

fallout. Volcanic dust in the very high atmosphere was carried completely around the world.

Heat from the eruption melted the snow and glacial ice on Mount St. Helens. Mudflows (slurries of volcanic debris and water) sped down stream channels (figure 1.4). A particularly large mudflow topped the banks of the Toutle River, destroying bridges and paralyzing traffic on major highways. Debris carried by the Toutle River was dumped into the Columbia River, blocking ship traffic between Portland, Oregon, and the Pacific Ocean.

The awesome energy released in this spectacle was a product of the earth's machinery, machinery driven by forces both within and on the earth. Mount St. Helens is only a small part of the constant, ordinarily slow, changing of the earth. Ocean basins open and close. Mountain ranges rise and are worn down to plains. Studying how the earth's machinery works can be as exciting as watching a great theatrical performance. Understanding the changes that take place in and on the earth, and the reasons for those changes, is the challenging objective of geology, the scientific study of the earth.

Figure 1.3 Mount St. Helens, May 18, 1980. Photo by U.S. Geological Survey.