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Preface

This issue of the journal reports some selected contributions from the workshops
BioConcur 2004 chaired by Anna Ingolfsdottir and Hanne Riis Nielson and
BioConcur 2005 chaired by Bud Mishra and Corrado Priami.

There are three contributions from BioConcur 2004. The first one is by
Calder, Gilmore and Hillston on the modelling of signalling pathways using the
stochastic process algebra PEPA. The second contribution is by Kuttler and
Niehren on gene regulation in 7-calculus. The last contribution is by Remy, Ruet,
Mendoza, Thieffry and Chsouiya on the relationships between logical regulator
graphs and Petri nets.

There are five contributions from BioConcur 2005. The first contribution is
by Eccher and Lecca on the automatic translation of SBML models to stochastic
m-calculus. The second paper is by Blinov, Yang, Faeder and Hlavacek on the
use of graph theory to model biological networks. The third contribution, by
Jha and Shyamasundar, introduces biochemical Kripke structures for distributed
model checking. The fourth paper is by Phillips, Cardelli and Castagna on a
graphical notation for stochastic m-calculus. The last paper is by Remy and
Ruet on differentiation and homeostatic behaviour of boolean dynamic systems.

The volume ends with a regular contribution by Margoninsky, Saffrey, Het-
herington, Finkelstein and Warner that describes a specification language and a
framework for the execution of composite models.

July 2006 Corrado Priami
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Modelling the Influence of RKIP on the ERK

Signalling Pathway Using the Stochastic Process
Algebra PEPA

Muffy Calder!, Stephen Gilmore?, and Jane Hillston?

! Department of Computing Science, The University of Glasgow, Glasgow, Scotland
muffy@dcs.gla.ac.uk
2 Laboratory for Foundations of Computer Science, The University of Edinburgh,
Scotland
stg@inf.ed.ac.uk, jeh@inf.ed.ac.uk

Abstract. This paper examines the influence of the Raf Kinase In-
hibitor Protein (RKIP) on the Extracellular signal Regulated Kinase
(ERK) signalling pathway [5] through modelling in a Markovian process
algebra, PEPA [11]. Two models of the system are presented, a reagent-
centric view and a pathway-centric view. The models capture function-
ality at the level of subpathway, rather than at a molecular level. Each
model affords a different perspective of the pathway and analysis. We
demonstrate the two models to be formally equivalent using the timing-
aware bisimulation defined over PEPA models and discuss the biological
significance.

1 Introduction

In recent years several authors have investigated the use of Petri nets and process
algebras — techniques originating in theoretical computer science — for represent-
ing the biochemical pathways within and between cells [15,18,10]. Largely, the
previous work has focussed on capturing the appropriate functionality at the
molecular level and analysis is through simulation. In this paper we present a
preliminary exploration of an alternative approach in which a more abstract
approach is taken and the target mathematical representation is a continuous
time Markov chain. This involves the analytical application of a process alge-
bra to a biochemical pathway with feedback. Our goal is to develop more than
one representation, suitable for different forms of analysis. We prove the two
representations to be equivalent (i.e. bisimilar).

The process algebra which we use is Hillston’s PEPA [11], a Markovian process
algebra which incorporates stochastic durations and probabilistic choices. The
system which we consider is the Ras/Raf-1/MEK/ERK signalling pathway, as
presented in [5]. We believe that our modelling is novel because we are able to
combine performance and different modelling viewpoints. Moreover we demon-
strate the feasibility of using process algebra to model signalling pathways in a
more abstract style than previously.

C. Priami et al. (Eds.): Trans. on Comput. Syst. Biol. VII, LNBI 4230, pp. 1-23, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 M. Calder, S. Gilmore, and J. Hillston

We propose that process algebra models are appropriate in this domain for
several reasons. First, an algebraic formulation of the model makes clear the
interactions between the biochemical entities, or substrates. This is not always
apparent in the classical, ordinary differential equation (ODE) models. Second,
an algebraic approach permits comparison of high level descriptions. For ex-
ample, when one is first building up a picture of a pathway from experimental
evidence, it may be natural to describe the pathway in a fine-grained, distrib-
uted fashion, e.g. each substrate (in this case a protein) is described in terms
of its interactions. That is, each (collection of a) protein is a process and all
processes run in parallel, synchronising accordingly. But later, we may prefer a
higher level view of a pathway which describes how a pathway is composed of
(perhaps already well known) sub-pathways. Indeed we may wish to derive the
latter from the former, or vice-versa. Third, a stochastic process approach allows
reasoning about livelocks, deadlocks, and the performance of the behaviour of
the pathway in the long-run.

This paper is an extended version of the earlier paper [2]. As previously, we
concentrate primarily on alternative approaches to constructing a representa-
tion of a pathway. We show that two contrasting representations can indeed be
identified. Moreover they can be formally shown to be equivalent. The novelty
of this paper lies in the systematic transformation between the alternative rep-
resentations which are presented in algorithmic form. The analysis of the model
has also been somewhat extended.

In the next section we give a brief overview of cell signalling and the Ras/Raf-
1/MEK/ERK pathway. In section 3 we give two different PEPA formulations
of the pathway: the first is reagent-based (i.e. distributed) and the second is
pathway-based. In section 4 we compare the two models and show them to be
bisimilar. Section 5 contains some analysis of the underlying continuous time
Markov model. Transformation between the two styles of representation is pre-
sented in section 6. There follows a discussion of further analysis, related work
and our conclusions.

2 RKIP and the ERK Pathway

The most fundamental cellular processes are controlled by extracellular signalling
[7]. This signalling, or communication between cells, is based upon the release
of signalling molecules, which migrate to other cells and deliver stimuli to them
(e.g. protein phosphorylation). Cell signalling is of special interest to cancer re-
searchers because when cell signalling pathways operate abnormally, cells divide
uncontrollably.

The Ras/Raf-1/MEK/ERK pathway (also called Ras/Raf, or ERK pathway)
is a ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. Briefly, Ras is activated by an external stim-
ulus, it then binds to and activates Raf-1 (to become Raf-1*, “activated” Raf)
which in turn activates MEK and then ERK. This “cascade” of protein inter-
action controls cell differentiation, the effect being dependent upon the activity
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of ERK. A current area of experimental scientific investigation is the role the
kinase inhibitor protein RKIP plays in the behaviour of this pathway: the hy-
pothesis is that it inhibits activation of Raf and thus can “dampen down” the
ERK pathway. Certainly there is much evidence that RKIP inhibits the malig-
nant transformation by Ras and Raf oncogenes in cell cultures and it is reduced
in tumours. Thus good models of these pathways are required to understand
the role of RKIP and develop new therapies. Moreover, an understanding of
the functioning and structure of this pathway may lead to more general results
applicable to other pathways.

Here, we consider how RKIP regulates the activity of the Raf-1/MEK/ERK
module of the ERK pathway, as presented in [5]. This paper [5] presents a number
of mathematical models in the form of nonlinear ODEs and difference equations
representing the (enzyme) kinetic reactions, based on a graphical representation
given in Figure 1. This figure is taken from [5], with some additions. Specifically,
we have added MEK and an associated complex, following discussions with the
authors!.

We take Figure 1 as our starting point, and explain informally, its meaning.
Each node is labelled by the protein (or substrate, we use the two interchange-
ably) it denotes. For example, Raf-1, RKIP and Raf-1*/RKIP are proteins, the
last being a complex built up from the first two. It is important to note that Raf-
1*/RKIP is simply a name, following biochemical convention; the / symbol is
not an operator (in this context). A suffix -P or -PP denotes a phosyphorylated
protein, for example MEK-PP and ERK-PP. Each protein has an associated
concentration, denoted by m1, m2 etc. Reactions define how proteins are built
up and broken down. We refer to the former as an association, or forward re-
action, and the latter as a disassociation, or backward reaction. Associations
are typically many to one, and disassociations one to many, relations. In the
figure, bi-directional arrows denote both forward and backward reactions; uni-
directional arrows denote disassociations. For example, Raf-1* and RKIP react
(forwards) to form Raf-1*/RKIP, and Raf-1/RKIP disassociates (a backward
reaction) into Raf-1* and RKIP. Reactions do not necessarily come in pairs; for
example, Raf-1*/RKIP/ERK-PP disassociates into Raf-1*, ERK and RKIP-P.
Each reaction has a rate denoted by the rate constants k1, k2, etc. These are
given in the rectangles, with kn/kn+ 1 denoting that kn is the forward rate and
kn + 1 the backward rate. So for example, Raf-1* and RKIP react (forwards)
with rate k1, and Raf-1/RKIP disassociates with rate k2.

Initially, all concentrations are unobservable, except for m1, mq, mr, mg, and
mio [5]

Figure 1 gives only a static, abstract view of the pathway; the dynamic be-
haviour is quite complex, particularly because some substrates are involved in
more than one reaction. In the next section we develop two process algebraic
models which capture that dynamic behaviour.

! Analysis of our original model(s) indicated a problem with MEK and prompted us
to contact an author of [5] who confirmed that there was an omission.
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Fig. 1. RKIP inhibited ERK pathway
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3 Modelling the ERK Signalling Pathway in PEPA

In this section we present two stochastic process algebra models of the ERK
signalling pathway.

The two models presented here encode different views of the underlying bio-
chemistry. The first is a reagent-centric view, focussing on the variations in con-
centrations of the reagents, fluctuating with phosphorylation and product for-
mation, i.e. with association and disassociation reactions. This model provides
a fine-grained, distributed view of the system. The second is a pathway-centric
view, tracking the legitimate serialisations of activities. This model provides a
coarser grained, more abstract view of the same system.

For some purposes in biological study the former view provides the right
conceptual tools and powers the programme of analysis. For other purposes the
pathway-centric view brings to the fore the dynamics of greatest interest. A
major contribution of this paper is the unification of both views.

We express both models in the PEPA stochastic process algebra [11]. We as-
sume some familiarity with this process algebra; a brief introduction to PEPA
is contained in Appendix A. All activities in PEPA are timed. Specifically, their
durations are quantified using exponentially-distributed random variables. The
PEPA algebra supports multi-way cooperations between components: the result
of synchronising on an activity « is thus another «, available for further syn-
chronisation. The multi-way synchronisation of PEPA makes this process algebra
ideally suited to this domain.
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Each reaction in the pathway is represented by a multi-way synchronisa-
tion — on the reagents of the reaction?. We refer to reagents as producers and
consumers, depending upon their role within the reaction. Table 1 gives the pro-
ducers and consumers for reactions in the pathway. The first column names the
reaction using the following convention. Reactions which are forward and back-
ward are called react, with a prefix which is the associated rate constant. For ex-
ample, klreact is the name of the reaction between Raf-1* and RKIP, to produce
Raf-1* /RKIP. Thus klreact is a 3-way synchronisation. Reactions which are only
disassociations are called product (because they produce products); again, the
prefix denotes the associated rate constant. Table 1 gives only the forward re-
actions for the reactions which are both forward and backwards; to obtain the
associated backward descriptions, replace Producer by Consumer and vice-versa.

Table 1. Reactions in the pathway

Reaction |Producer(s) Consumer(s)

klreact {Raf-1*, RKIP } {Raf-1*/RKIP }

k3react  |{ ERK-PP, Raf-1° /RKIP }|{ Raf-1° /RKIP/ERK-PP |
k6react |{ MEK-PP, ERK-P | {MEK-PP/ERK }

k9react {RKIP-P, RP} {RKIP-P/RP }

k12react |{ MEK, Raf-1*} {MEK/Raf-1* }

k5product |{ Raf-1*/RKIP/ERK-PP } |{ ERK-P, RKIP-P, Raf-1* }
k8product |{ MEK-PP/ERK } {MEK-PP, ERK-PP}
%11product|{ RKIP-P/RP } {RKIP, RP}

k14product|{ MEK /Raf-1* } {Raf-1*, MEK-PP }
k15product|{ MEK-PP } {MEK }

3.1 Modelling Centred on Reagents

The reagent-centred model is presented in Figures 2 and 3. In this view, we rep-
resent concentrations by a discrete number of abstract values. Here, we consider
the coarsest possible discretisation: there are two values representing (contin-
uous) concentrations; we refer to the two values as high and low. The former
implies that a reagent can participate (as a producer) in a forward reaction; the
latter implies that a reagent can participate (as a consumer) in a product, or
(as a producer) in a backward reaction. Otherwise, the substrate is inert, with
respect to a reaction. We discuss the effect of a finer granularity of abstract
concentration on the model in Section 7.

We define the behaviour of each substrate in turn, for each concentration. Thus
there are 2n equations, where n is the number of proteins. We adopt the naming
convention that high concentrations have a H subscript and low concentrations
have a L subscript.

Most equations involve a choice between alternative behaviours (notated by
+). For example, even in one of the simplest cases, RKIP, where there is a simple

2 We agree with the authors of [15] — reactions are fundamentally synchronous.
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Raf-13 & (kireact, k1).Raf-1f, + (k12react, k12).Raf-17,
Raf-1; & (k5product, ks).Raf-13 + (k2react, k2).Raf-1j;
+ (k13react, k13).Raf-1j; + (k14product, ki4).Raf-15

RKIPy ¥ (klreact,k:).RKIPy
RKIPL & (k11product,ki1).RKIPy + (k2react, k2). RKIPy

MEKnu ¥ (k12react, ki12). MEKL,
MEK;, & (k13react, k13). MEKgy + (k15product, k15). MEKn

MEK /Raf-15 ¥ (k14product, kis). MEK/Raf-1} + (k13react, k13).MEK /Raf-1j
MEK /Raf-1§ & (k12react, ki12). MEK /Raf-1}

MEK-PPy ¥ (k6react, k).MEK-PPy, + (k15product, kis).MEK-PPy,
MEK-PPL, ¥ (k8product, ks). MEK-PPy + (k7react, k7). MEK-PPy
+ (k14product, k14). MEK-PPy

ERK-PPy ¥ (k3react, k3). ERK-PPy,
ERK-PPL, & (kSproduct, ks).ERK-PPy + (k{react, k4). ERK-PPy

ERK-Py & (k6react, k¢). ERK-Py,
ERK-PL ¥ (k5product, ks). ERK-Py + (k7react, k7). ERK-Py

MEK-PP/ERKy 2 (k8product, ks). MEK-PP/ERKy, + (k7react, k7). MEK-PP/ERKL,
MEK-PP/ERKr, ¥ (k6react, k¢). MEK-PP/ERKy

Raf-1*/RKIPy % (k3react, ks).Raf-1* /RKIPy, + (k2react, ks).Raf-1* /RKIPy,
Raf-1* /RKIPy % (klreact, k:).Raf-1" /RKIPy + (kfreact, ks).Raf-1* /RKIPy

Raf-1* /RKIP/ERK-PPy & (k5product, ks).Raf-1* /RKIP/ERK-PPL,
+ (k4react, k4) Raf-1* /RKIP /ERK-PP,
Raf-1* /RKIP/ERK-PPL ¥ (k3react, ks).Raf-1* /RKIP/ERK-PPy

RKIP-Py & (k9react, ko) RKIP-Py,
RKIP-PL. ¥ (ksproduct, ks).RKIP-Px + (k10react, kio).RKIP-Py

RPu ¥ (k9react, ko).RPL
RP. ¥ (k11product,ki1).RPu + (k10react, k10).RPu

RKIP-P/RPu ¥ (k11product, k11 ).RKIP-P/RPy, + (k10react, ko). RKIP-P/RPL,
RKIP-P/RPy, ¥ (k9react, ko). RKIP-P/RPy

Fig. 2. PEPA model definitions for the reagent-centric model

cycle between high and low concentrations, there is still a choice of how to return
to a high concentration (by a backwards reaction, or through a product). Most
behaviours are more complex.

The equations define the possible reactions within the pathway. All of the
permissible interleavings of these reactions are obtained from the (synchro-
nised) parallel composition of these components. Figure 3 shows how these are
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f-1F
(Ra H {kireact,k2react,k12react,k13react,k5product,k14product}

(RKIPH {kireact,k2react,k11product}
1+ Bq
(Ra'f 1 /RKIPL { k3react,k4react}

(Raf-1*/RKIP/ERK-PPL)
(ERK-PL {kSproduct, k6react, k7react}
(RKIP—PL {kgreac?gmeact}
(RKIP-P/RPL
(RPH ||
(MEKL {k12react,k1react, k15product}
(MEK/Raf-lf, {kUPDrgi‘ld}
(MEK-PPx { k8product, kbreact, k7react}
(MEK-PP/ERK. D>
(ERK-PPx))))))))))))

{ k3react, kfreact, k5product}

{k9react, k10react k1 1product}

Fig. 3. PEPA model configuration for the reagent-centric model

composed in the PEPA algebra. The composition operator () is indexed by an
activity set (i.e. the events whose participants must be synchronised). The left
and right operands must cooperate on these activities, introducing a synchroni-
sation point. The degenerate case of this composition operator (where the set
is empty) provides the expected unrestricted parallel composition of the com-
ponents, allowing all possible interleavings without synchronisation. This case is
denoted by || (there is one occurrence).

The initial state of the model has high concentrations of some reagents and
low concentrations of the others, as described in the previous section. Therefore,
in Figure 3, proteins with an initial concentration are initially high; all others
are low.

3.2 Modelling Centred on Pathways

A different view is afforded by the pathway-centric perspective. This
de-emphasises reagents and emphasises sub-pathways within the signalling path-
way. In this model, given in Figure 4, there are five (sub)pathways, one for
each substrate with an initial concentration. Thus Pathway;o corresponds to
the pathway from RP (mi0), Pathwayzo to RKIP (m2), Pathwaysp to ERK-
PP (mg), Pathways to Raf-1* (m1), and Pathwaysp to MEK-PP (m7). Each
(sub)pathway describes, in effect, how a substrate is consumed and then, even-
tually, replenished.

It is important to note that none of these (sub)pathways is closed, i.e. there are
reactions with edges which are directed to/from outside of the (sub)pathway. Fig-
ure 6 gives a diagrammatic representation of the simplest pathway, Pathwayo.
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Pathway,, < (k9react, ko). Pathway,,
Pathway,, = (k11product,ki1).Pathway,, + (k10react, ko). Pathway

Pathway,, Y (kireact, k1).Pathways,,

Pathway,, < (k3react, ks). Pathway,, + (k2react, k2). Pathway
Pathway22 o (k5pr0duct ks).Pathway s + (k4react, ka). Pathway 5,
Pathway% (kgreact ko). Pathway,,

(k11product, k11).Pathway,q + (k10react, k1o). Pathway

Pathway,, <
Pathway s, = (kSreact, ks). Pathways,
Pathway31 o (k5product, ks).Pathway s, + (k4react, ka).Pathway 4,
Pathway 3, < (k6react, ke).Pathway s
(k8product, ks).Pathway 5, + (k7react, k7). Pathway 5,

Pathway 3 <
Pathway 4, d: (kl'react k1).Pathway 4, + (k12react, k12).Pathway 45
Pathway 4, ( k2react, k2). Pathway 4 + (k8react, k3).Pathway 4,
Pathway 43 < (k5product, ks). Pathway 4, + (k4react, ka). Pathway 4,
Pathway 3 < (k 138react, k13). Pathway 4, + (k14product, k14). Pathway 4

Pathway 5, o (k15product, k1s). Pathway s, + (k6react, ke). Pathway s,
Pathways, < ( k12react, k12). Pathway,

Pathway52 (k13react, k13).Pathways; + (k14product, k14). Pathway,
Pathway53 ! (k8product, kg).Pathway s, + (k7react, k7). Pathwayy,

Fig. 4. PEPA model definitions for the pathway-centric model

In this case, the pathway is not closed because there are two missing edges
associated with k9react and kI1product.

This presentation facilitates the direct verification of simple properties of the
model such as “the first observable activity is event X”. For example, an initial
syntactic inspection of this model would lead to the conclusion that the first
activity is one of klreact, k3react, k9react or k15product. Processing the model
with the PEPA Workbench [9] confirms that the initial model configuration
allows only k15product and klreact, the others are not permitted because some
necessary participants are not initially ready to engage in these reactions.

4 Comparison of Reagent and Pathway-Centric Models

The pathway-centric model captures longer chains of behaviour flow within the
system, leading to a smaller number of component definitions. Differentiating
fewer components in the pathways model leads to a simpler composition of
model components, presented in Figure 5. This is not only a matter of pre-
sentation. A larger state vector representation occupies more memory so the



