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THE MECHANICS AND THERMODYNAMICS OF CONTINUA
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tinuum mechanics and thermodynamics that emphasizes the universal status of the basic
balances and the entropy imbalance. These laws are viewed as fundamental building
blocks on which to frame theories of material behavior. As a valuable reference source,
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modynamics for graduates and advanced undergraduates in engineering, physics, and
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Preface

The Central Thrust of This Book

A large class of theories in continuum physics takes as its starting point the
balance laws for mass, for linear and angular momenta, and for energy, together
with an entropy imbalance that represents the second law of thermodynamics.
Unfortunately, most engineering curricula teach the momentum balance laws for
an array of materials, often without informing students that these laws are actually
independent of those materials. Further, while courses do discuss balance of energy,
they often fail to mention the second law of thermodynamics, even though its place
as a basic law for continua was carefully set forth by Truesdell and Toupin' almost
half a century ago.

This book presents a unified treatment of continuum mechanics and thermody-
namics that emphasizes the universal status of the basic balances and the entropy im-
balance. These laws and an hypothesis — the principle of frame-indifference, which
asserts that physical theories be independent of the observer (i.e., frame of refer-
ence) — are viewed as fundamental building blocks upon which to frame theories of
material behavior.

The basic laws and the frame-indifference hypothesis — being independent of
material — are common to all bodies that we discuss. On the other hand, particular
materials are defined by additional equations in the form of constitutive relations
(such as Fourier’s law) and constraints (such as incompressibility). Trivially, such
constitutive assumptions reflect the fact that two bodies, one made of steel and the
other of wood, generally behave differently when subject to prescribed forces — even
though the two bodies obey the same basic laws.

Our general discussion of constitutive equations is based on:

(i) the principle of frame-indifference;
(ii) the use of thermodynamics to restrict constitutive equations via a paradigm gen-
erally referred to as the Coleman—Noll procedure.

! TRUESDELL & ToupIiN (1960, p. 644). In the 1960s and early 1970s this form of the second law,
generally referred to as the Clausius-Duhem inequality (cf. footnote 152), was considered to be
controversial because — as the argument went — the notions of entropy and temperature make no
sense outside of equilibrium, an argument that stands in stark contrast to the fact that temperatures
are routinely measured at shock waves. The religious nature of this argument together with the ob-
servation that most conventional theories are consistent with this form of the second law gradually
led to its general acceptance — and its overall power in describing new and more general theories
gave additional credence to its place as a basic law of continuum physics.

Xix
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Preface

Because frame-indifference and the Coleman-Noll procedure represent powerful
tools for developing physically reasonable constitutive equations, we begin our dis-
cussion by developing such equations for:

(I) the conduction of heat in a rigid medium, as this represents an excellent vehicle
for demonstrating the power of the Coleman-Noll procedure;

(1) the mechanical theories of both compressible and incompressible, linearly vis-
cous fluids, where frame-indifference applied within a very general constitutive
framework demonstrates the veracity of conventional constitutive relations for
fluids.

Based on frame-indifference and using the Coleman—Noll procedure, we discuss
the following topics: elastic solids under isothermal and nonisothermal conditions;
coupled elastic deformation and species transport, where the species in question
may be ionic, atomic, molecular, or chemical; both isotropic and crystalline plastic
solids; and viscoplastic solids. In our treatment of these subjects, we consider general
large-deformation theories as well as corresponding small-deformation theories.

Our discussion of rate-independent and rate-dependent plasticity is not tradi-
tional. Unlike — but compatible with — conventional treatments, we consider flow
rules that give the deviatoric stress as a function of the plastic strain-rate (and an in-
ternal variable that represents hardening).> We also provide a parallel description of
the conventional theory based on the principle of virtual power. We do this because:
(i) it allows us to account separately for the stretching of the microscopic structure
and the flow of dislocations through that structure as described, respectively, by the
elastic and plastic strain-rates; (ii) it allows for a precise discussion of material stabil-
ity; and (iii) it provides a basic structure within which one can formulate more gen-
eral theories. In this last regard, conventional plasticity cannot characterize recent
experimental results exhibiting size effects. To model size-dependent phenomena
requires a theory of plasticity with one or more material length-scales. A number
of recent theories — referred to as gradient theories — accomplish this by allowing
for constitutive dependencies on gradients of plastic strain and/or its rate. Such de-
pendencies generally lead to nonlocal flow rules in the form of partial differential
equations with concomitant boundary conditions. For that reason, we find it most
useful to develop gradient theories via the principle of virtual power, a paradigm
that automatically delivers the partial-differential equations and boundary condi-
tions from natural assumptions regarding the expenditure of power.

Requirements of space and pedagogy led us to omit several important topics
such as liquid crystals, non-Newtonian fluids, configurational forces, relativistic con-
tinuum mechanics, computational mechanics, classical viscoelasticity, and couple-
stress theory.

For Whom Is This Book Meant?

Our goal is a book suitable for engineers, physicists, and mathematicians. More-
over, with the intention of providing a valuable reference source, we have tried to
present a fairly detailed and complete treatment of continuum mechanics and ther-
modynamics. Such an ambitious scope requires a willingness to bore some when
discussing issues not familiar to others. We have used parts of this book with good

2 We do this for consistency with the remainder of the book, which is based on the requirement that
“the stress in a body is determined by the history of the motion of that body™; cf. TRUESDELL &
NoLt (1965, p. 56). When discussing crystalline bodies, the flow rules express the resolved shear on
the individual slip systems in terms of corresponding slip rates.



Preface XXI

success in teaching graduates and advanced undergraduates in engineering, physics,
and mathematics.

Direct Notation

For the most part, we use direct — as opposed to component (i.e., index) — notation.
While some engineers and physicists might find this difficult, at least at first, we be-
lieve that the gain in clarity and insight more than compensates for the initial effort
required. For those not familiar with direct notation, we have included helpful sec-
tions on vector and tensor algebra and analysis, and we present the most important
results in both direct and component form.

Rigor

We present careful proofs of the basic theorems of the subject. However, when
the proofs are complicated or lengthy they generally appear in petite at the end
of the section in question. We also do not normally state smoothness hypotheses.
Indeed, standard differentiability assumptions sufficient to make an argument rig-
orous are generally obvious to mathematicians and of little interest to engineers and
physicists.

Attributions and Historical Issues

Our emphasis is on basic concepts and central results, not on the history of our
subject. For correct references before 1965, we refer the reader to the great ency-
clopedic handbook articles of TRUESDELL & ToupIN (1960) and TRUESDELL & NoLL
(1965). These articles do not discuss plasticity; for the early history of that subject
we refer the reader to the books of HiLL (1950) and MALVERN (1969). For more re-
cent work, we attempted to cite the contributions most central to our presentation,
and we apologize in advance if we have not done so faultlessly.

Our Debt

We owe much to the chief cultivators of continuum mechanics and thermodynam-
ics whose great work during the years 1947-1965 led to a rennaisance of the field.
Their names, listed chronologically with respect to their earliest published contri-
butions, are Ronald Rivlin, Clifford Truesdell, Jerald Ericksen, Richard Toupin,
Walter Noll, and Bernard Coleman. With the exception of plasticity theory, much
of this book stems from the work of these scholars — work central to the develop-
ment of a unified treatment of continuum mechanics and thermodynamics based on
(a) a precise statement of the balance laws for mass, linear and angular momentum,
and energy, together with an entropy imbalance (the Clausius-Duhem inequality)
that represents the second law of thermodynamics; (b) the unambiguous distinction
between these basis laws and the notion of constitutive assumptions; and (c) a clear
and compelling statement of material frame-indifference.

We are grateful to Paolo Podio-Guidugli, Guy Genin, and Giuseppe Tomassetti
for their many valuable comments concerning the section on plasticity; to B. Daya
Reddy for his help in developing material on variational inequalities for plastic-
ity; and to Ian Murdoch for extensive discussions that expanded our understanding
of the frame-indifference principle. Others who have contributed to this work are
Paolo Cermelli, Xuemei Chen, Shaun Sellers, and Oleg Shklyaev.
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