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PREFACE

This volume contains the lecture notes prepared by the speakers for the Amer-
ican Mathematical Society Short Course on Modern Statistics: Methods and Applica-
tions given in San Antonio, Texas, on January 7—8, 1980.

We were very pleased with the substantial attendance at the course. The skills
of the lecturers and the enthusiasm of the participants encouraged the AMS Commit-
tee on Short Courses to request that these notes be published. We are indebted to
our colleagues for this support and the AMS office for the cooperation in publish-
ing these proceedings.

Of course, the choice of topics from a field as large as Statistics is a difficult
one. However, I did want to avoid any substantial overlap with the highly success-

“ful short course on statistics held three years earlier in St. Louis, January, 1977.
Therefore it seemed very natural to begin with one important topic that is some-
times overlooked in an introductory course, particularly one in mathematical stat-
istics. Yet this topic is one through which the general public most often hears
about statistics, namely, survey sampling. Wayne Fuller spoke on “Samples and
Surveys”, noting the operations necessary in conducting a survey of a human popu-
lation. In his article, he explains the construction of a probability sample design
and the corresponding optimal estimators.

The more general problem of the design and analysis of an experiment was
covered by Peter John in his “Analysis of Variance”. These techniques have, for
years, been extremely important in applications and have also motivated a large
amount of statistical research. It is clear that even in an elementary design the
experimenter must understand the importance of randomization.

~ Nonparametric statistical methods have played a major role in modern sta-
tistics. Two coordinated talks on that subject were given by Ronald Randles and
Thomas Hettmansperger. Randles introduced distribution-free rank tests, such as
one by Wilcoxon, and some of their good asymptotic properties. Hettmansperger
then explained how these rank tests could be used to obtain point and interval
estimates for various parameters, }ncluding the regression situation. These resulting
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R-estimates are very robust because they are not highly sensitive to reasonable
deviations from the underlying assumptions. )

The important topic of regression was continued by considering isotonic re-
gression and time series. F. T. Wright showed how to use the method of maximum
likelihood to estimate ordered parameters. Then Douglas Martin considered a time
sequence of data. After presenting a collection of interesting examples, he discussed
appropriate models and their estimates, including robust ones.

While it is impossible to cover all of Statistics in six articles, these and their
references should prove useful to those who wish to learn something of the natures
of modern statistics. In that regard, I must also call your attention to Studies in
Statistics that 1 had the opportunity to edit for Volume 19 of Studies in Mathema-
tics under the sponsorship of the Mathematical Association of America. I hope
that this present volume, along with that one, will provide the interested reader a
good introduction to modern statistical methods.

Robert V. Hogg
University of Iowa
March, 1980
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SAMPLES AND SURVEYS

Wayne A. Fullerl, Iowa State University

I. Introduction.

The design and execution of a large scale survey is a sizeable research

undertaking. We outline the steps in such an operation.

A. Definition of the objectives.
B. Specification of the procedures.
1. Universe of interest.
2. Data to be collected and method of collection.
3. Sample design.
4, Questionnaire design.
C. Field work.
D. Data processing.
1. Coding.
2. Editing.
3. Estimation and tabulation.

E. Report preparation.

We assume that the objectives of the study require obtaining data from
an existing group of elements. The universe is the collection of elements
about which statements will be made. In most surveys data are collected on
a large number of characteristics. The regular polls (Gallup, etc.) record
items such aé age, race, sex, place of residence, and political affiliation,
in addition to responses on a few questions of current interest.

The reasons for observing a part of the universe (taking a sample) in-
stead of the entire universe (a census) are all practical. First the re-
search budget seldom permits observing every element of the population. A
personal interview now costs on the order of $30 to $100 to complete. Also,
in certéin quality testing situations, the observations are destructive. It
is of little use to know that a lot of light bulbs will last an average of

1980 Mathematics Subject Classification 62D05.
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2 WAYNE A. FULLER

200 hours if they have all been burned to establish that fact.

There are other disadvantages of censuses. The first is timing. The
data for the 1970 Census of Population were collected beginning in April 1970.
The first preliminary raw count reports (for states, counties and municipal-
ities) were available in May through October 1970. The advanced reports be-
come available in the period September 1970 through February 1971. The U.S.
summary report was released in January 1972.

More subtle is the problem of quality control in a census. The popula-
tion census of the United States requires over one quarter million field work-
ers and supervisors. Because fewer interviewers are required for a sample,
it should be possible to select better people and to better supervise the
field operation.

Once one has decided that a census is impossible, the questions become:
What kind of sample? How large a sample?

A sample is a portion of the universe. A random sample (or probability

sample) is a sample selected in such a way that the probability of selecting
every sample is known.
A simple random sample is a sample of n elements chosen from a popula-

tion of N elements in such a way that each one of the NCn samples has an
equal probability of being selected.

A purposive sample (an alternative term is judgmental sample) is any
sample that is not a probability sample. Generally speaking, purposive
samples are selected_to meet certain criteria. The prime example is the

political subdivision that has voted for the winner in the last ten electionms.

What is the place of the two kinds of sampling? Let us first consider
the problem from an empirical point of view. An experiment cited by Jessen
(1978, p. 18) compared two methods of sampling a universe of 126 stones.
Members of a statistics class were instructed to look at the entire universe
and then to select a sample that would represent the averagé weight of the
stones. The sixteen students selected three samples of sizes 1, 2, 5 and 10
and one sample of size 20. Simple random samples of the same sizes were also
selected. (126 samples of size one, 30 of size 2, 90 of size 5, 60 of size
10 and 10 of size 20 were selected.)

Table 1. Mean absolute deviation for two types of sample selection.l

Type of Sample Sample Size

1 2 5 10 20
Judgment Lo.o Lh.9 35.3 38.5 31.0
Random 80.6 71.4 h1.3 3.1 2.2

IFrom Jessenl(l978, p. 18)
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The conclusion of the Jessen experiment seems a part of scientific
practice. That is, you can expect that your journal article will be
accepted if you are working with a very small judgment sample, on the order
of 5 or less, but can anticipate difficulties if you submit an article based

on a large judgment sample.

ITI. Simple Random Sampling.

We present a few of the results on simple random sampling. Because of
the simplicity of these results, sampling offers an excellent method of in-
troducing a student to statistics. The population of possible samples can be
enumerated and the expectation of a random variable can be introduced as the
average over the finite number of possible outcomes.

Let the population be composed of NA elements. Iet the value of the
y-characteristic of the elements be denoted by {yi: i=1, 2, ..., N} . The
probability that a particular element appears in a simple random sample is
n/N. The probability that a particular pair of elements appears in the sample
is [I\T(N-l)]-l n(n-1) . From these basic properties of simple random samples
several results are immediate.

RESULT 1. The sample mean is unbiased for the population mean.

RESULT 2. The variance of the sample mean is

2 2
= )2y Nno® _Nens®
E{(Y'Y) ] “N-1n - N n ’ (l)
where 82 = N(N-l)-l o2, o2 = Nt Z?:l (yi -Y)2 and y 1is the sample mean.

RESULT 3. An unbiased estimator of 82 is

-1 n =
s® = (n-1) % [yi -y12. (2)
i=1
Assume that the characteristic y takes on the two values O and 1 .
Let Nl of the elements be ones and N-Nl of the elements be zeros. If a
simple random sample of size n 1is selected from the N elements, the
probability that exactly n

of 1 is

of the elements will possess a y-charcteristic

()
(2

Table 2 contains the probabilities for all possible values of (Nl, nl)

1

()

for a sample of n=5 selected from a population of N=15 . Two lines have
been drawn through the values. The lines are such that the sum of the
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probabilities to the right of the right line in every row is less than 0.12 .
The lines enable us to. aefine an interval for each sample outcome such
that, for each value of N, , the probsbility is greater than 0.88 that the
interval will cover the true Nl . The intervals for each n, are defined
by the horizontal lines in Table 2. The intervals of Table 2 are the clas-
sical confidence intervals introduced by Neyman (1934, 1935). In particular,

see Neyman (1934, p. 624).

Table 2. Probabilities of sample outcames for samples of size five
selected fram fifteen

s

N‘umbe; of 1's Number of 1's in Sample
in Populstion: ny
ivl' 0 1 2 3 Lo 5
) . 1.0000 l 0 0 0 0 0
1 0.6667 0.3333 | © 0 0 0
2 0.4286 0.4762 0.0952 0 0 0
3 0.2637  0.4L945  0.2198 | 0.0220 0 0
N 0.1538 0.4395 0.3297 0.0733 0.0037 0
5 T0.0839 | 0.3497  0.399%  0.1499 | 0.0166  0.0003
6 0.0420 0.2517 0.4196 0.2398 0.0449 0.0020
7 0.0187 0.1632 0.3916 0.3263 0.0932 0.0070
8 0.0070 0.0932 0.3263 0.3916 0.1632 0.0187
9 0.0020 0.04k49 0.2398 0.4196 0.2517 0.0420
10 0.0003 0.0166 0.1499 0.3966 0.3497 0.0839
1 0 0.0037 0.0733 | 0.3297  0.4395  0.1538
12 o] 0.0220 0.2198 0.hkols5 0.2637
13 0 0 0 0.0952 0.4762 0.4286
14 0 0 0 0 0.3333 0.6667
15 0 0 0 o 0 ] 1.0000

Table 3. Possible outcomes for a population with Nl =8

n Probability Interval Statement

1.

0 0.0070 [ o, 4] Wrong
1 0.0932 (1, 71 Wrong
2 0.3263 [ 3, 10] Right
3 0.3916 [ 5, 12] Right
" 0.1632 [ 8, 14] Right
5 0.0187 (11, 15] Wrong
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The possible outcomes for N1=8-are given in Table 3. The probability of
a wrong statement is 0.1189 and the probability of a correct statement is 0.8811

The confidence interval is particularly forceful when used with random
sampling of zero-one characteristics. This is because the model is
guaranteed to be correct. The use of randomization in sample selection
creates the population of samples for which our statement applies. In random
sampling from a finite universe, we know the nature of the sampling distri-
bution because we have created it!

To establish confidence intervals for the mean of a finite population for
a characteristic that is not 0-1 we must expand our theoretical constructs.
One'approach is to assume that the finite population is a random sample from an
infinite superpopulation. For example, assume that the finite population is a
random sample from a normal population. If we select a random sample from the
finite population, we have created two independent random samples, one of size
n and one of size N-n, from the original population. Then the difference
?r-_Y-, where y is the mean of the n elements and Y is the mean of the N el-
ements, is distributed as a normal random variable with mean zero and variance

— = N-n
V{y-Y} =] EO.Z i

It follows that

t = [(tn) -n)s21 2 F - D)

is distributed as Student's +t. The denominator of the t statistic is an
unbiased estimator of the variance conditional on (yl, Yor woes yN) as well
as an unbiased estimator of the unconditional variance. In this argument the
distribution of ;-—? is for the population of all possible pairs of samples
of size n and N-n selected from the parent population. Perhaps, because
samplers have traditionally preferred to think of the finite population as
fixed, this theoretical construct seldom appears in sampling texts.

In defining a sequence for a central limit theorem for sampling from a
finite universe, one must consider a sequence of samples selected from a
sequence of populations. To obtain a limiting normal distribution, the
sequence of populations must satisfy certain conditions. Two approaches have
been used. One is to specify conditions on the population sequence itself.
In this case the distribution is for the population of random samples created
by randomization conditional on fixed population values. Madow (1948) and
Hijek (1960) give results of this type. The second approach is to assume
that the finite population is a sample from an infinite population. We state
a result of the second type.

THEOREM. Iet {U4: t=1, 2, ...} denote a sequence of finite popula-
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tilons, where ut i1s & random sample of size N, N, >N, _,, selected from
an infinite poﬁu‘.la.tion. .Assume the infinite population possesses finite
first and second moments. Let simple random samples of size D, nt > nt-l
be se‘lected from Nt . Let

limN,;ln=f, 0<f<1l.

t — t
Then
}oo gyt .
n (7, -T,) — N(0, (1-1)0?) ,

where §t is the sample mean and —ft is the population mean for population

t and o2 is the variance of the infinite population.
III. Unequal Probability Sampling.

To use probability ideas in sampling, it is not necessary that each
element have an equal probability of entering the sample. To introduce the
ideas of unequal probability sampling, consider a population of five elements
with characteristics {yl, y2, y3, yh, y5} . Assume that we create ten slips
of paper as given in Table 4. Let P; denote the fraction of the slips that
have element i recorded on them. Then the average over the ten slips of
t:he ratios p-l Yy, is E? Y. .

: i i i=1 “i =i
an unbiased estimator of the total of y is Py yi . If we use replace-
ment sampling, the average of the n values we observe is an unbiased esti-
mator of the population total Y with variance

Therefore, if we randomly choose one slip,

N
-1 -1

= opy(py vy =Y. (8)
i=1

A
v{Y} =n
© In nonreplacement sampling, the probabilities of selection m; are
typically specified so that ZILI ﬂi =n, where n is the number of elements
to be included in the sample. With this normalization, the unbiased estimator
of the- populatior total is '
n

A -

Y= % ¥y, @ -
The variance of the estimator depemds upon the ‘joint probabilities of
selection m 3 s

™M=

N
nj'_l (1-ni)yf+ z n;l nt (
i1 i#3 .0

A
v{Y} = UPRLA ﬂj)yi ¥y - (9)

An unbiased estimator of this quantity ié
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A R | -1 -1
(}{y} = 123 ﬂij (ﬂin,j'ni,j)[ni ¥i-Ty yJJZ . (10)

Table k4. -Population of slips for unequal probability sampling.

Pg;ligizﬁn Number of -

Element °= y~-value Such Slips Py ¥y
1 vy L 2.5 v
o vy 4 25 %
1 vy L 2.5 vy
a1 vy L 2.5 ¥y
2 Y, 3 (10/3) v,
g s Yo 3 (10/3) ¥,
2 ¥ 3 (10/3) ¥,
3 Y3 1 10 v,
b n, 1 10 y),
5 Y5 1 10 Vs

IV. Sample Sizes and Sample Frames.

The first question a camsulting survey statistician hears from the client
is: How meny ... do I need? The question, formulated 5o that an answer is
possible, requires considerable information: '

‘ (1) A statement of desired closeness for the final answer. For
example: "I wish my estimate of the mean of y to be within
d units of the true value with probability 1-o ."
(2) An estimate of the variability in the parent population. For
example: "The variable y is similar to the variable x
which has a variance of o ."

Assume the existence of an idealized client that specifies that the
estimate of the proportion is to be within 0.02 of the true proportion with
orobability 1l-oa . Some required sample sizes are givén in Table 5.

To select a probability sample, it is necessary to creabe< a list, called
the sampling frame, such that every element of the universe is.‘q.ssocia.ted with
at least one item on thé list. We consider fremes such that each element is
associated with one and only one item on the list. The frame may bée a
physical list such as a list of automobile resistra.tion\s- or it may be a con-
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ceptual list such as the list of all possible latitude, longitude coordinates
for every point of the land area in the United States.

Table 5. 8ize of sample required for observed proportion p to
be within 0.02 of population proportion P with at
least probability 1l-o .

True Proportion
Population Size P = 0.5 P =0.1
l-a=0.9 l-a=0.99 l-a=0.9

100 98 99 98
1,000 720 816 610
2,500 1,226 1,559 9lk8

10,000 1,922 2,946 1,304

25,000 2,206 3,571 1,424

50,000 2,306 3,84k 1,465

100,000 2,359 3,99 1,482
o 2,h01 L1k 1,493

The construction of a standard sampling frame is the task of' construct-

ing a list of primary sampling units such that every element in the popula-

tion is in exactly one of the primary sampling units. Some primary sampling
units may contain no elements and some may contain several. Because so few
lists of human and economic populations exist, it is of‘ten necessary to

create a list of primary sampling units that can be identified in the field
operation. One of the most important frames of this type is the area frame.

The area sample is an example of a cluster sample. If any primary

sampling unit in the frame contains more than one or less than one observa-
tion unit (element) the primary sampling units are called clusters.

Cluster sampling is used for two reasons.

(a) It may be impossible or prohibitively expensive to construct a
list of observation units.

(b) For a fixed expenditure, it is often possible to obtain a smaller
méan square error for an estimator by observing groups of observa-
tion unité. ‘

The estimation formulas presented for simple random samples apply for

cluster samples with Vi being the total of the y-characteristics of the
elements in the primary sampling unit. ’

VII. Ratio and Regression Estimation.
Methods of estimation employed in survey sampling, beyond the basic mean-
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type estimators we have presented, are ratio and regression estimation.
Assume that we have available some information about the population. As an
example, consider a study of farms. We have very good data on the land in
farms. Call the total land in farms X and assume it to be known. Assume,
less realistically, that we draw a random sample of farms. ILet the y-char-
acteristic be the acres of corn. Then the ratio estimator of the total acres

of corn is

x n n -1 -1 -

Y = ( z y‘)( z x.) X=x"yX, (21)

r . i)\. i
=] i=1

where X, is the acreage of the ith sample farm. The simple regression

estimator of the total acres of corn is

Qﬁ =NMy+u(X-%], (22)

where X=N1X and b is the ususl least squares regression coefficient.

Neither of these estimators is unbiasedi Defining a sequence of popula-
tions, it is possible to demonstrate that n2(§;-f) is approximately dis-

tributed with mean zero and variance

(1-f)(s§-eRs +R? sﬁ) 5 (23)

XY

- - = - -1 A % =
where f =N 1 n, R=Y/X, and ¥, = N } Y, . Similarly, n*(y, -Y) is

approximately distributed with mean zero and variance

(1-f)(s§-B S (2k)

)

yhere B = §°° § and ¥y —N'IQ

K
VIII. Survey Design.

The objective of survey design is to use the available information to
create a method of sampling and an estimation rule that yields estimators with
desirable properties. Some desirable properties of design-estimator pairs
are:

1. Unbiasedness.

2. Accuracy. A measure of the accuracy of an estimator % of ©

is the mean square error.
A
M.S.E. = E{(8 - 6)2}

3. Consistency.
A
L. Scale invariance. The estimator 6(y) is scale invariant if
A A
8(ky) = k6(y) for all fixed k .

A
5. Iocation invariance. The estimator 6(y) is location invariant if
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O(k+y) = k+6(y) for all fixed k .
6. Simplicity. -
Internal consistency. The estimators 31(1), ge(x) and @3(1) are
internally additively consistent for 91, 92, and 93 if
8,0 + 5,0 = 8,
for 81+ 92 = 93 .
Accurate internal estimator of the variability of the estimator.

9. Robustness. A sample design-estimator pair is robust if departures
of the sampled population from that a.ntiéipa.ted at the design stage
produce small decreases in accuracy.

10. .Pra.ctica.lity.

Godambe (1955) pointed out that if we pay attention to the individual
values of the population (treat them as fixed constants) there is no prob-
ability design that is best for all possible populations. For a particular
set of positive y's we can obtain zero variance by meking the selection -
probabilities Pi of Table 5 proportional to yi .

Godambe's result suggests that we should quantify the prior information
associated with the individual elements of the population at the design stage.
We use Godambe's formalism to present the design problem. .

Iet U= {ui: i=1, 2, ..., N} denote the N units of the finite popula-
tion. ILet s denote a subset of the units of the population and let o/ be
the set of all subsets, s. ILet d be an estimator constructed from the
unjts of s . Iet p denote a sampling design. The sampling design assigns
probabilities, summing to one, to the elements s of /. Iet (G denote
the prior information about U available at the time a survey design . is to
be chosen. Iet P denote the set of all possible designs end 8 the set of
all possible estimators. Given (G and an optimality criterion, the problem
of choosing the optimal p < and 4 < ® is the problem of survey design.

The class 8 is often restricted to the class of linear\qbimators. A
linear estimator can be written as

n

d= iil v, (8) vy (25)
where the weights are permitted to be a function of the element identification
and of the sample'.

Iet us consider a simple statistical problem. Let the observations

{yi: i=1, 2, ..., n} be independently distributed (p, o2) where p and
o® are unknown. That is, {yl, Vps ooy yn} is a random sample selected
from a parent distribution with mean p and variance o2 . Then ; is the
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best linear unblased estimator of .. Assume that a second sample of size
N-n 1is to be 'selected from the same distribution. Dénci{';e the mean of the‘
second sample by ;N-n . Then the best linear unbiased predictor of §N-n is
also y . It follows that ¥, is the best linear unbiased predictor of

T =Nt [ny+ (N-n);N_n] .

If we rearrange the timing of the sampling operations we can use this
model as a framework for developing sample designs and estimators. Assume
that we are first given the sample of N observations from the population.
Then from the N we select a simple ra.nd.om' sample of size n. The sample
mean remains the best linear unbiased predictor of the mean of the remaining
N-n elements. Considering the finite population to be a sample from a super-
population is a way to formalize our prior information about the finite popu-
lation. We can conceptualize the problem in this way at the design stage
even if we plan to treat the finite population as a set of fixed numbers at
the ultimate estimation stage.

At the design stage we assume that the finite population is a vector
selected from an infinite population with mean p and nonsingular NxN co-
variance matrix E, where g has typical element oy 4" In later formula-
tions p and £ may be specified to be functions of unknown parameters.

We restrict designs to the class of random designs. In this formulation
there are two sources of "variation" to be considered at the design stage.
The first is associated with the superpopulation from which the finite popu-
lation is viewed as a sample. The second is that introduced by the random
sample design. We denote the expectation with respect to the superpopulation
with the symbol € and the expectation with respect to the sampling desi&n
by E .

An estimator d is conditionally model unbiased for ' Y if

“ef{(a-Y)st=0. (26)-

The conditioning in (26) is with respect to the elements of s and the prior
information for those elements, but not on the y-characteristics of s . The
estimator d is said to be a model unbiased predictor of Y if (26) holds
for all s in o such that p{s} > O.

An estimator d 4is unbiased for Y with respect to the design p if

Efa} =Y, (27)

for all (yl s Yo eoes yN) contained in N-dimensional Euclidean space, where

E{a} = £ d(s) p(s)



