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Preface

This book serves two purposes: The first is to introduce the readers to
some traditional topics such as the matrix formalism of geometrical
optics, wave propagation and diffraction, and some fundamental
background on Fourier optics. The second is to introduce the essentials
of acousto-optics and electro-optics, and to provide the students with
experience in modeling the theory and applications using MATLAB®, a
commonly used software tool. This book is based on the authors’ own
in-class lectures as well as research in the area.

The key features of the book are as follows. Treatment of each
topic begins from the first principles. For example, geometrical optics
starts from Fermat’s principle, while acousto-optics and electro-optics
start from Maxwell equations. MATLAB examples are presented
throughout the book, including programs for such important topics as
diffraction of Gaussian beams, split-step beam propagation method
for beam propagation in inhomogeneous as well as Kerr media, and
numerical calculation of up to 10-coupled differential equations in
acousto-optics. Finally, we cover acousto-optics with emphasis on
modern applications such as spatial filtering and heterodyning.

The book can be used for a general text book for Optics/Optical
Engineering classes as well as acousto-optics and electro-optics classes
for advanced students. It is our hope that this book will stimulate the
readers’ general interest in optics as well as provide them with an
essential background in acousto-optics and electro-optics. The book is
geared towards a senior/first-year graduate level audience in engineering
and physics. This is suitable for a two-semester course. The book may
also be useful for scientists and engineers who wish to learn about the
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basics of beam propagation in inhomogeneous media, acousto-optics and
electro-optics.

Ting-Chung Poon (TCP) would like to thank his wife Eliza and
his children Christina and Justine for their encouragement, patience and
love. In addition, TCP would like to thank Justine Poon for typing parts
of the manuscript, Bill Davis for help with the proper use of the word
processing software, Ahmad Safaai-Jazi and Partha Banerjee for help
with better understanding of the physics of fiber optics and nonlinear
optics, respectively, and last, but not least, Monish Chatterjee for
reading the manuscript and providing comments and suggestions for
improvements.

Taegeun Kim would like to thank his wife Sang Min Lee and his
parents Pyung Kwang Kim and Ae Sook Park for their encouragement,
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Chapter 1

Geometrical Optics

When we consider optics, the first thing that comes to our minds is
probably light. Light has a dual nature: light is particles (called photons)
and light is waves. When a particle moves, it processes momentum, p.
And when a wave propagates, it oscillates with a wavelength, A. Indeed,
the momentum and the wavelength is given by the de Broglie relation

P
where h ~ 6.62 x 10~** Joule-second is Planck's constant. Hence from
the relation, we can state that every particle is a wave as well.
Each particle or photon is specified precisely by the frequency v
and has an energy E given by

E :.h,l/.

If the particle is traveling in free space or in vacuum, v = ¢/, where ¢
is a constant approximately given by 3 x 10® m/s. The speed of light in
a transparent linear, homogeneous and isotropic material, which we term
v, is again a constant but less than c. This constant is a physical
characteristic or signature of the material. The ratio c/v is called the
refractive index, n, of the material.

In geometrical optics, we treat light as particles and the
trajectory of these particles follows along paths thatwe call rays. We
can describe an optical system consisting of elements such as mirrors and
lenses by tracing the rays through the system.

Geometrical optics is a special case of wave or physical optics,
which will be mainly our focus through the rest of this Chapter. Indeed,
by taking the limit in which the wavelength of light approaches zero in
wave optics, we recover geometrical optics. In this limit, diffraction and
the wave nature of light is absent.
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1.1 Fermat's Principle

Geometrical optics starts from Fermat's Principle. In fact, Fermat's
Principle is a concise statement that contains all the physical laws, such
as the law of reflection and the law of refraction, in geometrical optics.
Fermat's principle states that the path of a light ray follows is an
extremum in comparison with the nearby paths. The extremum may be a
minimum, a maximin, or stationary with respect to variations in the ray
path. However, it is usually a minimum.

We now give a mathematical description of Fermat's principle.
Let n(x,y, z) represent a position-dependent refractive index along a
path C' between end points A and B, as shown in Fig. 1.1. We define the
optical path length (OPL) as

OPL =/ n(x,y, z)ds, (1.1-1)
c

where ds represents an infinitesimal arc length. According to Fermat's
principle, out the many paths that connect the two end points A and B,
the light ray would follow that path for which the O PL between the two
points is an extremum, i.e.,

0(OPL) = (3/ n(x,y,z)ds =0 (1.1-2)
Jco

in which 6 represents a small variation. In other words, a ray of light will
travel along a medium in such a way that the total OFPL assumes an
extremum. As an extremum means that the rate of change is zero, Eq.
(1.1-2) explicitly means that

%/nds+ (,)gy/nds%—%./nds:(). (1.1-3)

Now since the ray propagates with the velocity v = ¢/n along
the path,

nds = Eds = cdt, (1.1-4)
-

where dt is the differential time needed to travel the distance ds along
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the path. We substitute Eq. (1.1-4) into Eq. (1.1-2) to get

é/ n(ls:('é/ dt = 0. (1.1-5)
Jo Jo

B

C
n(x,y,z)

Fig. 1.1 A ray of light traversing a path C between end points A and B.

As mentioned before, the extremum is usually a minimum, we can,
therefore, restate Fermat's principle as a principle of least time. In a
homogeneous medium, i.e., in a medium with a constant refractive index,
the ray path is a straight line as the shortest O PL between the two end
points is along a straight line which assumes the shortest time for the ray
to travel.

1.2 Reflection and Refraction

When a ray of light is incident on the interface separating two different
optical media characterized by n; and ns,_as shown in Fig. 1.2, it is well
known that part of the light is reflected back into the first medium, while
the rest of the light is refracted as it enters the second medium. The
directions taken by these rays are described by the laws of reflection and
refraction, which can be derived from Fermat's principle.

In what follows, we demonstrate the use of the principle of least
time to derive the law of refraction. Consider a reflecting surface as
shown in Fig. 1.3. Light from point A is reflected from the reflecting
surface to point B, forming the angle of incidence ¢; and the angle of
reflection ¢,, measured from the normal to the surface. The time
required for the ray of light to travel the path AO 4+ OB is given by
t = (AO +OB)/v, where v is the velocity of light in the medium
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containing the points AOB. The medium is considered isotropic and
homogeneous. From the geometry, we find

() = LR34+ (d— 22 + B2+ 22V2). (120

v

Incident ray Reflected ray

Medium 1 ™

Medium 2 n,

interface

Fig. 1.2 Reflected and refracted rays for light incident at the interface of two media.

i d :

SSS S S S S S S SSSSS S
0o

Fig. 1.3 Incident (AO) and reflected (OB) rays.
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According to the least time principle, light will find a path that
extremizes ¢(z) with respect to variations in z. We thus set dt(z)/dz =0
to get

d—z 2z
: = — 1.2-2
W (d— 222 R+ 2 (1.2-2)
or
sin ¢; = sing, (1.2-3)
so that
@i = Or, (1.2-4)

which is the law of reflection. We can readily check that the second
derivative of t(z) is positive so that the result obtained corresponds to
the least time principle. In addition, Fermat's principle also demands that
the incident ray, the reflected ray and the normal all be in the same
plane, called the plane of incidence.

Similarly, we can use the least time principle to derived the law
of refraction

n,sin ¢; = n,sing; , (1.2-5)

which is commonly known as Srnell's law of refraction. In Eq. (1.2-5), ¢;
is the angle of incidence for the incident ray and ¢; is the angle of
transmission (or angle of refraction) for the refracted ray. Both angles
are measured from the normal to the surface. Again, as in reflection, the
incident ray, the refracted ray, and the normal all lie in the same plane of
incidence. Snell's law shows that when a light ray passes obliquely from
a medium of smaller refractive index n,into one that has a larger
refractive index n,, or an optically denser medium, it is bent toward the
normal. Conversely, if the ray of light travels into a medium with a
lower refractive index, it is bent away from the normal. For the latter
case, it is possible to visualize a situation where the refracted ray is bent
away from the normal by exactly 90°. Under this situation, the angle of
incidence is called the critical angle ¢, given by

sing. =n,/n,. (1.2-6)

When the incident angle is greater than the critical angle, the ray



6 Engineering Optics with MATLAB

originating in medium 1 is totally reflected back into medium 1. This
phenomenon is called total internal reflection. The optical fiber uses this
principle of total reflection to guide light, and the mirage on a hot
summer day is a phenomenon due to the same principle.

1.3 Ray Propagation in an Inhomogeneous Medium: Ray Equation

In the last Section, we have discussed refraction between two media with
different refractive indices, possessing a discrete inhomogeniety in the
simplest case. For a general inhomogeneous medium, i.e., n(z, y. z), it is
instructive to have an equation that can describe the trajectory of a ray.
Such an equation is known as the ray equation. The ray equation is
analogous to the equations of motion for particles and for rigid bodies in
classical mechanics. The equations of motion can be derived from
Newtonian mechanics based on Netwon's laws. Alternatively, the
equations of motion can be derived directly from Hamilton's principle of
least action. Indeed Fermat's principle in optics and Hamilton's principle
of least action in classical mechanics are analogous. In what follows, we
describe Hamilton's principle so as to formulate the so called Lagrange's
equations in mechanics. We then re-formulate Lagrange's equations for
optics to derive the ray equation.

Hamilton's principle states that the trajectory of a particle
between times tjand ¢ is such that the variation of the line integral for
fixed t,and t, is zero, i.e.,

ta
6/ L(qy., q,.t)dt =0, (1.3-1)
Jt

where L = T — V is known as the Lagrangian function with 1" being the
kinetic energy and V the potential energy of the particle. The g;'s are
called generalized coordinates with k = 1,2, 3, ...n. Also,q; = dgy./dt.

Generalized coordinates are any collection of independent coordinates g
(not connected by any equations of constraint) that are sufficient to
specify uniquely the motion. The number n of generalized coordinates is
the number of degrees of freedom. For example, a simple pendulum has
one degree of freedom, ie., q. = ¢, = ¢, where ¢ is the angle the
pendulum makes with the vertical. Now if the simple pendulum is
complicated such that the string holding the bob is elastic. There will be
two generalized coordinates, ¢, = ¢, = ¢, and ¢, = ¢, = x, where ris
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the length of the string. As another example, let us consider a particle
constrained to move along the surface of a sphere with radius R. The
coordinates (z,y,z) do not constitute an independent set as they are
connected by the equation of constraint x> + y* + 22 = R”. The particle
has only two degrees of freedom and two independent coordinates are
needed to specify its position on the sphere uniquely. These coordinates
could be taken as latitude and longitude or we could choose angles ¢ and
¢ from spherical coordinates as our generalized coordinates.

Now, if the force field F'is conservative, i.e.,.V x F' = (), the
total energy £ = T + V' is a constant during the motion, and Hamilton's
principle leads to the following equations of motion of the particle called
Lagrange's equations:

4oL, oL (1.3-2)
dt aq, aqy.

As a simple example illustrating the use of Lagrange's equations, let us
consider a particle with mass m having kinetic energy 7' = ym/|r|

under potential energy V' (z. y, z), where
r(z,y.x) = z(t)ag + y(t)ay, + z(t)a,

is the position vector with az, a,, and a, being the unit vector along the
x, y, and z direction, respectively. According to Newton's second law,

F =mr, ’ (1.3-3)

where 7 is the second derivative of 7 with respect to ¢. As usual the
force is given by the negative gradient of the potential, i.e.,
F = — VV. Hence, we have the vector equation of motion for the
particle

mr = —VV (1.3-4)

according to Newtonian mechanics. Now from the Lagrange's equations,
we identify
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L:T—V:%m‘flz—v.

Considering q, = x, we have
oL oV

d 0L .
E(E)—mx and %= B (1.3-5)

Now, from Eq. (1.3-2) and using the above results, we have

_ov
or’

mr = (1.3-6)
and similarly for the y and 2z components as g, = y and ¢,=z. Therefore,
we come up with Eq. (1.3-4), which is directly from Newtonian
mechanics. Hence, we see that Newton's equations can be derived from
Lagrange's equations and in fact, the two sets of equations are equally
fundamental. However, the Lagrangian formalism has certain advantages
over the conventional Newtonian laws in that the physics problem has
been transformed into a purely mathematical problem. We just need to
find T'and V for the system and the rest is just mathematical
consideration through the use of Lagrange's equations. In addition, there
is no need to consider any vector equations as in Newtonian mechanics
as Lagrange's equations are scalar quantities. As it turns out, Lagrange's
equations are much better adapted for treating complex systems such as
in the areas of quantum mechanics and general relativity.

After having some understanding of Hamilton's principle, and
the use of Lagrange's equations to obtain the equations of motion of a
particle, we now formulate Lagrange's equations in optics. Again, the
particles of concern in optics are photons. Starting from Fermat's
principle as given by Eq. (1.1-2),

(5/ n(x,y,z)ds =0. (1.3-7)
JC

We write the arc length ds along the path of the ray as
ds? = da? + dy® + dz* (1.3-8)

with reference to Fig. 1.4, where for brevity, we have only shown the 2-



