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Foreword to the series

In the 1920’s comparatively few people paid much attention to the branch
of science known as crystallography, and the only journal devoted to it was
circulated to a few hundred subscribers, mostly libraries. Scientists in the
classical disciplines hardly recognized crystallography as a science, although
each apparently regarded it as a small segment of his own field. No American
university boasted a professor of crystallography and any instruction given
was adjunct to mineralogy. Nevertheless, papers of interest to crystallo-
graphers appeared in journals of mineralogy, physics and chemistry,
although not in large numbers. In those days one might claim to have an all-
around acquaintance with crystallography because he was able to keep up
with the literature.

This is no longer true. In the period between the first and second world
wars, science flourished, and scientists not only published more papers, but
an increasing proportion of them dealt with solid materials. It was inevitable
that the chemists, metallurgists, physicists and ceramists should make in-
creasing use of crystallographic theory and methods, that the journals of
many fields should publish more papers of crystallographic interest, and that
new journals devoted to crystallography and the “‘solid state’ should arise.
Soon the abstracting journals contained hundreds of titles of crystallographic
interest with each issue, and now few of us can keep even reasonably well
informed about the many aspects of the science of crystals, to say nothing of
keeping abreast of the advances in all these aspects. Not only is it out of the
question to keep up with the mass of literature that is turned out, but it is
even a little difficult to maintain contact with all the advances in one’s own
specialty. Accordingly, we are tending to become parochial.

In the words of Warren Weaver ““. . .the volume of the appreciated but
not understood keeps getting larger and larger.” In order to improve this
condition to some extent we need the services of those who, having become
authorities in some segments of our field, are willing to integrate their
understandings of these limited regions. With such help many of us can gain
a sufficient understanding of matters whose original literature we have neither
the time nor the inclination to study. Such writings exist in several fields,
but none, to date, in crystallography. It is to fill this need that the Wiley
Monographs in Crystallography are offered.

MARTIN J. BUERGER



Preface

The following account represents an attempt to summarize the results of
studies of three-dimensional systems of linked points, a subject that has
interested the author during the past 20 years. Some of the results have been
published as a series of papers in Acta Crystallographica entitled “The
Geometrical Basis of Crystal Chemistry,” Parts | to 12, 1954-1976. *
During the past few years many new 3D nets and some new 3D polyhedra
have been derived, but it has become obvious that the publication of further
papers in this series is not a satisfactory way of describing the work. So many
cross-references to earlier papers became necessary that the later papers
tended to be unintelligible unless the reader had all the previous papers
readily available and also had the patience to follow the sometimes devious
lines of thought of the author. This book summarizes the earlier work and
includes descriptions and illustrations of many new systems that have not
been described.

The obvious and simple relation of much of this work to the Platonic solids
and to simple Euclidean geometry makes it surprising that geometers have
not explored this field during the past two thousand years or so. The reason is
presumably that the study of periodic three-dimensional systems of points,
lines, and volumes, seems to have been left for the most part to the crystallo-
grapher, despite notable contributions from a small number of mathemat-
icians interested in three-dimensional geometry.

Apart from their intrinsic interest, and beauty, as examples of the logical
extension of classical Euclidean geometry, three-dimensional systems of
connected points are clearly very much a part of structural chemistry in its
widest sense. The relation of the crystal structures of compounds such as
zeolites and clathrate hydrates to space-filling arrangements of polyhedra is
evident and has long been recognized; it is also well known that many silicates
and aluminosilicates have structures based on vertex-sharing tetrahedra
placed at the points of various 4-connected nets. The relation of 3-connected
[and (3, 4)-connected] nets to a (smaller) number of crystal structures has

* “The Geometrical Basis of Crystal Chemistry,” Parts 1-12, Acta Crystallogr., pt. 1, 1954,
7,535; pt. 2, 1954, 7, 545; pt. 3, 1954, 7, 842; pt. 4, 1954, 7, 849; pt. 5, 1955, 8, 32; pt. 6, 1956,
9, 23; pt. 7 (with R. R. Sharpe); 1963, 16, 857; pt. 8, 1965, 18, 894; pt. 9, 1968, B24, 50; pt. 10,
1969, B25, 1711; pt. 11, 1972, B28, 711, pt. 12, 1976, B32, 2619.
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become apparent more recently. It is still unusual, however, for the crystallo-
grapher to describe a structure in terms of its basic topology. Such a descrip-
tion not only provides a simple and elegant way of representing the structure
but it emphasizes relations between structures that are not always apparent
from conventional descriptions in terms of space groups and sets of equiva-
lent positions.

It has not been easy to write a connected account of this work, ard some
of the text may be difficult to follow when the reader is assisted only by line
drawings and pairs of stereoscopic photographs. In this subject models are
indispensable, and the author has had the advantage of studying models of
most of the systems described. Models of many of the 3D polyhedra can be
constructed quite easily from strips of thin card or plastic, and many 3D nets
may be built from the plastic tubing and metal “valence clusters’ that are
commercially available.

A. F. WELLS

Storrs, Connecticut
September 1976
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Introductory

The present study began by attempting to answer two questions. Only five
simple convex polyhedra (n, p) have all their faces of the same kind (n-gons)
and the same number (p) meeting at each vertex:

14 —_—
(3, 3) 3,4 (3,5) (3, 6)
Tetrahedron Octahedron Icosahedron
n 4, 3) 4,4)
Cube
(5’ 3) Plane nets
Pentagonal
dodecahedron
(6, 3)

The tetrahedron is the first member of the family (3, 3), (4, 3), and (5, 3); in all
members three edges meet at each vertex (3-connected), and the shortest
circuits (n-gons) have 3, 4, or 5 edges. The next member of this family is the
plane hexagonal net (6, 3), which has the property that the shortest circuit
including any two of the three links meeting at any point is a 6-gon. Our first
question concerns the nature of 3-connected nets (1, 3) in which n is greater
than 6. Such nets, in which the shortest circuit including any pair of links
from any point is an n-gon, are called uniform 3-connected nets; evidently
they contain no circuits smaller than n-gons.



4 Three-dimensional nets and polyhedra

Alternatively we may focus our attention on the circuits (polygons) that
form the surface of the polyhedron. All the faces of three of these polyhedra,
tetrahedron, octahedron, and icosahedron, are triangles (which are equi-
lateral in the most regular forms of the solids), and the numbers of triangles
meeting at each vertex are respectively 3, 4, and 5. If six triangles meet at each
point, a closed convex polyhedron is no longer possible, and (3, 6) is a
tessellation on an infinite two-dimensional (2D) surface and is the regular
plane net (3, 6) on the Euclidean plane if the triangles are equilateral, or on
an infinite (open-ended) cylindrical surface. If now we make a tessellation in
which seven or more triangles meet at each point and make it from narrow
strips of paper or plastic, which in the simplest case are made equal in length,
we find that the surface buckles and eventually joins up in a complex way.
Our second question concerns the nature of the surfaces on which tessella-
tions (3, p) can be drawn when p exceeds the value (6) for a plane net. We refer
to such surfaces as the surfaces of 3D polyhedra.

These two families, 3-connected nets {n, 3) and 3D polyhedra (3, p), form
only part of the whole problem (Table 1.1), which includes all systems (n, p)
having n and/or p greater than the values permissible for plane nets. Since we
derive separately the uniform 3D nets (and also some other nets which are
not uniform nets) and 3D polyhedra, and since systems of both types appear
in Table 1.1, it is necessary to discuss the relation between them. A closely

Table 1.1 Systems (n, p) of connected points

p
n 3 4 5 6 7 8
3 t 0 i (3., 6)
4 ¢ 4,4
5 d ~
6 6, 3) N 3D Polyhedra and 3D nets
7
8




Introductory 5

related question is the dual relation between pairs such as (3, 8) and (8, 3).
However it is not feasible to consider such basic questions until we have
described some 3D nets and polyhedra, and discussion of these matters is
therefore deferred.

There are only five convex polyhedra having all faces of the same kind
and the same number of faces meeting at each vertex, and there are only three
plane nets having all polygons of the same kind and the same number of
polygons meeting at each point. Moreover, there are two ways of accounting
for these circumstances. The topological proof is concerned only with the
number (n) of edges of the faces or polygons and with the connectedness (p)
of the vertices (points), that is, the number of edges (links) meeting at each
vertex (point). For a (finite) convex polyhedron or a plane net, this number p
is the same as the number of n-gons meeting at a point, since two edges of each
polygon meet at a given point and each edge is common to two polygons. For
a finite convex polyhedron (n, p) with Z vertices, it follows directly from
Euler’s relation (which itself is purely topological) that

4n

7 =
4 —n—-2)(p -2

(L.1)

For finite values of Z,
nm—2)(p—2)<4 (1.2)

which is satisfied by only five integral combinations of n and p, namely:

(n, p) Z

(3, 3) 4 tetrahedron
(3,4) 6 octahedron
(3, 5) 20 icosahedron
4, 3) 8 hexahedron
(5, 3) 12 dodecahedron

The solutions for Z = oo, that is, of
n—2)(p—2)=4 (1.3)

correspond to the plane nets (n, p), that is, (3, 6), (4, 4), and (6, 3) (Fig. 1.1a).
Equation (1.1) also gives Z for the Archimedean and Catalan (semiregular)
solids if the mean value of n or p is used. The 13 Archimedean solids have



