from ASSEMBLY
~|-.AN UAGE to

DAVID HERGERT
NANCY THIBEAULT

PC ARCHITECTURE

PC ARCHITECTURE FROM
ASSEMBLY LANGUAGE TO C

DAVID HERGERT

Miami University

NANCY THIBEAULT

Miami University

Upper Saddle River, New Jersey Columbus, Ohio

Library of Congress Cataloging-in-Publication Data

Hergert, David.
PC architecture from assembly language to C / David Hergert, Nancy
Thibeault.
s cm.
Includes index.
ISBN 0-13-653775-8
1. Microcomputers. 2. Microprocessors. 3. Computer architecture.
4. Assembler language (Computer program language) 5. C (Computer
program language) 1. Thibeault, Nancy. II. Title.
QA76.5.H4447 1998
004.16--DC21 97-20688
CIP

Cover art: © 1997 Photo Disc, Inc.

Editor: Charles E. Stewart, Jr.

Production Editor: Alexandrina Benedicto Wolf

Cover Design Coordinator: Karrie M. Converse

Cover Designer: Russ Maselli

Production Manager: Pamela D. Bennett

Marketing Manager: Debbie Yarnell

Editorial/Production Supervision: Custom Editorial Productions, Inc.

© 1998 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company

=
= Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

Notice to the Reader: The publisher and the author do not warrant or guarantee any of the products and/or
equipment described herein nor has the publisher or the author made any independent analysis in connection
with any of the products, equipment, or information.used herein. The reader is directed to the manufacturer for
any warranty or guarantee for any claim, loss, damages, costs, or expense arising out of or incurred by the
reader in connection with the use or operation of the products or equipmem.‘ i

The reader is expressly advised:to adopt all safety precautions that might be indicated by the activities and
experiments described herein. The reader assumes all risks in connection with such instructions.

This book was set in Times Roman by Custom Editorial Productions; Inc. and was printed and bound by
R.R. Donnelley and Sons Company. The cover was printed by Phoenix Color Corp.

AP+ SO et . TR P S lt

Printed in the United States of America

10987654321

ISBN: 0O-13-E53775-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

PC ARCHITECTURE FROM
ASSEMBLY LANGUAGE TO C

PREFACE

Over the past decade, there have been many books on PC assembly language written
for computer science and engineering technology programs. Some texts place a heavy
emphasis on microprocessor hardware, and others have a stronger focus on assembly
language and operating systems. This book, while placing a slightly stronger focus on
assembly language, seeks to provide a practical balance between hardware and soft-
ware. Timing diagrams, 80x86 bus configurations, PC bus configurations, and a set of
interfacing experiments make up the hardware components of the text. A complete cov-
erage of assembly and how it relates to the PC hardware, the BIOS, and C make up the
software component of the book. Numerous examples are given to supplement topics in
the text.

This book can be used as a text or as a reference manual. As a text, it presents the
history of the microcomputer. It starts with a crude microprocessor unit (the Easy4),
evolves to .COM files (with structure derived from the CPM operating system), .EXE files
(which allow memory segmentation), and ends with C files. As a reference, the appendixes
contain valuable information on BIOS and DOS interrupts (Appendixes A and B), PC
memory and port maps (Appendixes C and D), a summary of 8088-based instructions (Ap-
pendix E), an ASCII table (Appendix F), installing the Easy4 software (Appendix G), and
a set of interfacing experiments (Appendix H). The Easy4 software and the library file
ASY.LIB are included with the text. ASY.LIB is on Disk 2 and can be copied to the
MASM directory.

The PC operating system (whether it is DOS, Windows® 3.1, or Windows 95) has a
common core of BIOS and DOS interrupts. These interrupts are explained with numerous
examples, along with an introduction to 80x86 assembly language and the PC memory
map. This book emphasizes programming as a means to teach PC architecture. The text is
designed for instructors desiring to give their students a solid understanding of how the PC
operating system works. Students who have had an introductory course in the C language
and want to broaden their programming knowledge by learning how C relates to assembly
will find this book useful. The prerequisite for this book is, at minimum, a course in the C
language. Although this is not absolutely necessary, it would also be helpful if the student
had or is taking a course in digital systems.

Vi

PREFACE

The text begins at an elementary level and advances to coverage of interrupt service
routines, terminate and stay resident programs, and DOS memory configurations. A simple
processor called the Easy4 is used to help introduce basic architecture without relying on
advanced 80x86 topics like segmentation. At Miami University, a separate course is used to
teach such hardware topics as bus architecture, address decoding, DMA, and other related
concepts. The authors envision this book being used in two- or four-year computer or elec-
trical engineering technology programs. It may also be useful in computer technology or
computer science programs.

Learning assembly language on 80x86 processors can be a daunting task for stu-
dents. Not only do they have to learn the CPU registers and assembly language
mnemonics, but they must also understand the segmented architecture of the 80x86 and
the structure of .EXE files on the PC. To this end, the book gradually introduces these
topics. Chapters 1 through 10 include topics normally covered in a course on PC as-
sembly language, and can be covered in a single semester. Chapters 11 through 14 intro-
duce advanced topics, and can be included in a second course or as selected extensions to
a first course.

Chapter 1 introduces students to bits and bytes, base conversions, and basic micro-
processor architecture. Chapter 2 covers a pseudocomputer, the Easy4. It allows students
to “see” the relationship between registers and memory by graphically displaying them on
the screen. A simple stack is also introduced in this chapter, as well as instruction fetch,
decode, and execute cycles.

Segments are introduced in Chapter 3 and are fully explained in Chapter 5. Since
.COM files are easier to understand, they are introduced before .EXE files. This gives the
student time to learn the 80x86 assembly language mnemonics before studying segmenta-
tion and the .EXE structure. This is a departure from most assembly language texts, which
tend to introduce .EXE files when they are covering assembly instructions.

Chapter 6 introduces the ASY.LIB library provided on disk with the book. This li-
brary contains many common I/O routines for the keyboard, screen, and printer. The
80x86 stack is also introduced in this chapter. Chapter 7 provides some useful PC exam-
ples using the ASY.LIB library, including the clock timer, toggle keys, keyboard buffer,
and writing directly to screen memory and printer ports. Chapter 8 covers basic string
operations.

Chapter 9 gives some basic floating point operations, including transcendental func-
tions. This chapter gives examples that engineering technology students may find useful.
Chapter 10 covers interrupts and interrupt service routines. Examples are given using the
screen and mouse.

Chapter 11 provides unique coverage of an assembly text. Using Microsoft C as an
example, it disassembles basic C programs to show the equivalent 80x86 assembly lan-
guage version of the .EXE file. This helps students understand how C is converted into as-
sembly when compiled. There is also coverage of intermingling assembly and C code, in-
cluding passing variables from C to assembly and back. Terminate and stay resident
programs are also covered in this chapter, using combined C and assembly routines.

Chapter 12 covers the PC boot process and the memory map. Programs used to view
the memory map are also covered. Chapter 13 covers advanced C memory and I/O rou-
tines, mainly oriented toward tips and techniques not covered in a standard introductory
course in C. Chapter 14 covers mnemonics from the 80286, 80386, and 80486. Finally,

PREFACE vii

Appendix H contains a set of interfacing experiments including I/O ports, analog measure-
ments that include maximum, minimum, DC, and RMS voltage readings, and frequency
measurements. Also included is an experiment on creating an ISR for interrupt driven I/O.
Many hours of work have gone into the writing of this text. Thanks to all of the stu-
dents at Miami University who have patiently tolerated the many revisions. We would also
like to thank the following reviewers for their invaluable feedback: Mike Awwad, DeVry
Institute; Boris Kovalchuk, Central Washington University; Michael A. Miller, DeVry In-
stitute; and Gregory S. Romine, Indiana University-Purdue University at Indianapolis.

David Hergert
Nancy Thibeault

BRIEF CONTENTS

10

11

MICROPROCESSOR ARCHITECTURE

EASY4 PROGRAMMING AND ARCHITECTURE
COM FILES AND DEBUG

ADDITIONAL 80X86 INSTRUCTIONS

80X86 SEGMENTATION, .EXE FILES,
AND MISCELLANEOUS INSTRUCTIONS

LINKING OBJECT FILES AND THE .ASY LIBRARY
ADVANCED MEMORY AND PORT 1/0

STRING OPERATIONS

80X87 FLOATING POINT OPERATIONS
INTERRUPTS AND 1/0

ASSEMBLY LANGUAGE AND C

18

39

56

80

100

112

131

140

153

169

12

13

14

BRIEF CONTENTS

BIOS, DOS, COMMAND.COM, AND
THE PROGRAM SEGMENT PREFIX

ADVANCED C MEMORY AND /0 ROUTINES

80286/80386/80486 INSTRUCTIONS

Appendix A: BIOS Interrupts

Appendix B: DOS Interrupt Functions
Appendix C: Memory Map

Appendix D: Port Map

Appendix E: 8088 Instruction Set
Appendix F: ASCII Table

Appendix G: The Easy4 PC Software
Appendix H: PC Interfacing Experiments

Index

191

204

214

226
232
236
239
243
247
253
255
277

CONTENTS

MICROPROCESSOR ARCHITECTURE 1
The Structure of a Computer 1
The 80X86 Family of Microprocessors 4
Microcomputer Systems 4
Microprocessor Architecture 5
Groups of Bits 6
Processor Size 6
Contents of the Arithmetic Logic Unit 7
Counting in Binary and Decimal 7
Translating Binary to Decimal 9
Translating Decimal to Binary 9
Hex Representations 10
Representation of Instructions in Memory 11
Binary Addition 11
Binary Subtraction 12
Boolean Operations 14
Chapter 1 Problems 17
EASY4 PROGRAMMING AND ARCHITECTURE 18
The Easy4 Microcomputer 18
Easy4 Instructions 20
Easy4 MOVE Instructions 20
Easy4 Algebraic Instructions 21
Easy4 Conditional and Jump Instructions 22

Xi

Xii CONTENTS

Easy4 Stack Instructions 23
Easy4 Miscellaneous Instructions 23

How Machine Language is Stored in Memory 25
Programming the Easy4 26

The Easy4 Bus 30

The Easy4 CPU 31

The Easy4 Decoder 31
Clock Cycles 32
Fetching an Instruction from Memory 33
Interpreting an Instruction 33
Easy4 Timing Diagrams 35
Easy4 Versus 80x86 Processors 36
Compiling Assembly Language Programs 36
Chapter 2 Problems 37
3 COM FILES AND DEBUG 39
New Instructions in this Chapter 39
The 80X86 Internal Registers 40
Mnemonics and Operands 41
DEBUG and COM Files 41

A First 8086 Assembly Language Program 42
Viewing Registers 43
Printing More Characters to the Screen 43
Memory Addresses 44

An Easier Way to Print Messages 44
Indirect Addressing with the MOV Instruction 45
Sending Messages to the Printer 49
Chapter 3 Problems 54
4 ADDITIONAL 80X86 INSTRUCTIONS 56
New Instructions in this Chapter 56
More on Indirect Addressing 62
Big and Little Endian Representations 62

Input and Output Ports 63

The Printer Port 63

The XCHG Instruction 65
Conditional Operations 66

The TEST Instruction 67
ROTATE and SHIFT Instructions 67

Boolean Instructions

71

CONTENTS Xiii
Masking Bits in a Register 72
A Routine to Print Hex Numbers to the Screen 72
Algebraic Instructions 73
Multiplying and Dividing Numbers 75
Multiplying and Dividing Using SHR and SHL 75
MUL and DIV Instructions 76
Chapter 4 Problems 78
80X86 SEGMENTATION, .EXE FILES,
AND MISCELLANEOUS INSTRUCTIONS 80
New Instructions in this Chapter 80
The CALL and RET Instructions 83
The PUSH and POP Instructions 84
Pushing and Popping the Flag Register 86
Flag Instructions 86
Segmented Architecture 87
Structure of .EXE Files 88
The CBW and CWD Instructions 93
The Multiplexed 8086 Bus 94
8086 Bus Cycle 96
PC ISA Bus 98
Chapter 5 Problems 98
LINKING OBJECT FILES AND THE .ASY LIBRARY 100
New Instructions in this Chapter 100
Linking .OBJ and .LIB Files 100
Assigning Variables to a Predefined Address 105
Using the Scancode Function in ASY.LIB 105
Memory Operations with the PTR Operator 107
The LDS and LES Instructions 108
The Stack and the BP Register 109
Chapter 6 Problems 111
ADVANCED MEMORY AND PORT I/0 112
The Keyboard Flag Register 112
The Internal PC Timer 114
Obtaining Pseudorandom Numbers 118

Xiv CONTENTS
Screen I/O 119
Writing Directly to Screen Memory 121
Plugging the Keyboard Buffer 124
Creating Tones on the Speaker 126
Writing Directly to the Printer Port 129
Chapter 7 Problems 130
8 STRING OPERATIONS 131
New Instructions in this Chapter 131
Character Strings 133
The DI and SI Registers 134
The Direction Flag 134
Move String Instructions 135
String Comparison Instructions 136
Repeat Prefixes 138
Chapter 8 Problems 139
9 80X87 FLOATING POINT OPERATIONS 140
The 80x87 Math Coprocessor 140
Fractional Binary Notation 141
Converting Fractional Binary to Decimal 141
Converting Decimal Numbers to Fractional Binary 141
Procedure for Converting Decimal to Fractional Binary 141
Floating Point Data 142
Floating Point Operations 144
Trigonometric Functions 148
Floating Point Emulation 151
Chapter 9 Problems 152
10 INTERRUPTS AND 1/0 153
What Are Interrupts? 153
The Interrupt Vector Table 154
Video INT 10H 156
The Mouse Interrupt 158

File I/O

161

CONTENTS

XV

Interrupt Service Routines on the PC 166
IRQs in the PC 166
Structure of an Interrupt Service Routine 167
Chapter 10 Problems 167
11 ASSEMBLY LANGUAGE AND C 169
Disassembly of C Programs 169
Description of .ASM File Created by C 170 °
Interfacing C with Assembly Language 175
In-Line Assembly 175
Linking Assembly Language Programs with C 176
Building Terminate and Stay Resident Programs in Microsoft C 177
Chapter 11 Problems 190
12 BIOS, DOS, COMMAND.COM, AND
THE PROGRAM SEGMENT PREFIX 191
The PC Memory Map 191
The Program Segment Prefix 193
Booting the PC 196
The POST Test 196
The IOSYS.COM Hidden File 197
The MSDOS.COM and COMMAND.COM Files 197
High Memory Models 198
The Expanded Memory Specification 198
The Extended Memory Specification 198
Flat Memory Model 202
Chapter 12 Problems 202
13 ADVANCED C MEMORY AND I/0 ROUTINES 204
What Time Is It in C? 204
Arguments to Main() 206
Interrupts in C 209
Shelling and Chaining in C 210
Reading a Disk Directory in C 211
Chapter 13 Problems 212

XVi CONTENTS

14 80286/80386/80486 INSTRUCTIONS 214
New Instructions in This Chapter 214
Compiling 80286 and Higher Instructions 216
ENTER and LEAVE Instructions 217
Compiling 80386 and Higher Instructions 219
Bit Test Instructions 221
Flag Test Instructions 223
Chapter 14 Problems 224
Appendix A: BIOS Interrupts 226
Appendix B: DOS Interrupt Functions 232
Appendix C: Memory Map 236
Appendix D: Port Map 239
Appendix E: 8088 Instruction Set 243
Appendix F: ASCII Table 247
Appendix G: The Easy4 PC Software 253
Appendix H: PC Interfacing Experiments 255

Index

277

CHAPTER 1
Microprocessor Architecture

THE STRUCTURE OF A COMPUTER

In twenty years’ time, computers have shrunk from large mainframes that took up a whole
room, to laptops that weigh less than six pounds. At the same time, microcomputers have
advanced from a small box with no keyboard or monitor to multimedia machines capable
of editing motion pictures. This book is about PC-based (or IBM®-compatible) microcom-
puter architecture. In a microcomputer, the electronic hardware that makes up the com-
puter is contained in a variety of integrated circuits including the microprocessor, clock,
memory, and port chips (Figure 1.1).

The microprocessor chip includes all of the circuitry needed to implement instruc-
tions coming from the operating system or programming language. In mainframe com-
puters, the processor is contained in many separate circuits. In microcomputers, the
processor has been squeezed onto one chip. Program instructions and data are stored in
memory chips. Today’s microcomputers have far more memory than a mainframe of
thirty years ago had. Instructions are stored in one section of memory, and data in another.
In order to interpret instructions stored in memory, a microprocessor must first fetch each
instruction from memory before interpreting it.

Port chips control access to outside devices such as the keyboard, monitor, mouse,
and printer. Think of a computer port chip as being similar to a shipping port. When a boat
laden with goods comes from overseas, the boat must first stop at an assigned port before
the goods can enter the country. The same is true for a computer port. When data comes
from an outside source, it must be routed to a port in order for the microprocessor to have
access to it. The microprocessor has instructions that allow it to send information to or re-
ceive information from a port.

All computers have a basic operational structure as shown in Figure 1.2. The Oper-
ating System and high-level Programming Language control the Electronic Hardware
that comprises the physical layer (Layer 1) of the computer. The programming language
could be BASIC, Pascal, C, FORTRAN, or any high-level language. When the computer
is turned on, a core routine loads the operating system in first (this is called a system boot),

1

CHAPTER 1 MICROPROCESSOR ARCHITECTURE

Memory Chips

Microprocessor

Chip

| Clock |

FIGURE 1.1

Port Chips

IKeyboardl | Mouse] I Printer] IDisk Drivesl [Speakersl

Microcomputer System

and the programming language is then loaded by the operating system. At higher layers,
the computer is easier to use and program.

The Application Program, Layer 4, is a program that is frequently used, such as a
spreadsheet, CAD program, or word processor. It is written in a programming language
(Layer 3). Most modern software is written in either the C or C++ language or a combina-
tion of Assembly and C. The operating system is also written in a combination of As-
sembly and C. The programming language communicates with the operating system
(Layer 2) to control the electronic hardware (Layer 1). Note the arrows connecting the four
layers in Figure 1.2. All four are intertwined. This book slowly unravels the connection be-
tween them. You will study the underlying glue that holds them together. This “glue”
is called machine language. Applications programs, programming languages, and the
operating system must all be converted to a series of instructions that the microprocessor

