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PREFACE

Over the past decade, there have been many books on PC assembly language written
for computer science and engineering technology programs. Some texts place a heavy
emphasis on microprocessor hardware, and others have a stronger focus on assembly
language and operating systems. This book, while placing a slightly stronger focus on
assembly language, seeks to provide a practical balance between hardware and soft-
ware. Timing diagrams, 80x86 bus configurations, PC bus configurations, and a set of
interfacing experiments make up the hardware components of the text. A complete cov-
erage of assembly and how it relates to the PC hardware, the BIOS, and C make up the
software component of the book. Numerous examples are given to supplement topics in
the text.

This book can be used as a text or as a reference manual. As a text, it presents the
history of the microcomputer. It starts with a crude microprocessor unit (the Easy4),
evolves to .COM files (with structure derived from the CPM operating system), .EXE files
(which allow memory segmentation), and ends with C files. As a reference, the appendixes
contain valuable information on BIOS and DOS interrupts (Appendixes A and B), PC
memory and port maps (Appendixes C and D), a summary of 8088-based instructions (Ap-
pendix E), an ASCII table (Appendix F), installing the Easy4 software (Appendix G), and
a set of interfacing experiments (Appendix H). The Easy4 software and the library file
ASY.LIB are included with the text. ASY.LIB is on Disk 2 and can be copied to the
MASM directory.

The PC operating system (whether it is DOS, Windows® 3.1, or Windows 95) has a
common core of BIOS and DOS interrupts. These interrupts are explained with numerous
examples, along with an introduction to 80x86 assembly language and the PC memory
map. This book emphasizes programming as a means to teach PC architecture. The text is
designed for instructors desiring to give their students a solid understanding of how the PC
operating system works. Students who have had an introductory course in the C language
and want to broaden their programming knowledge by learning how C relates to assembly
will find this book useful. The prerequisite for this book is, at minimum, a course in the C
language. Although this is not absolutely necessary, it would also be helpful if the student
had or is taking a course in digital systems.
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The text begins at an elementary level and advances to coverage of interrupt service
routines, terminate and stay resident programs, and DOS memory configurations. A simple
processor called the Easy4 is used to help introduce basic architecture without relying on
advanced 80x86 topics like segmentation. At Miami University, a separate course is used to
teach such hardware topics as bus architecture, address decoding, DMA, and other related
concepts. The authors envision this book being used in two- or four-year computer or elec-
trical engineering technology programs. It may also be useful in computer technology or
computer science programs.

Learning assembly language on 80x86 processors can be a daunting task for stu-
dents. Not only do they have to learn the CPU registers and assembly language
mnemonics, but they must also understand the segmented architecture of the 80x86 and
the structure of .EXE files on the PC. To this end, the book gradually introduces these
topics. Chapters 1 through 10 include topics normally covered in a course on PC as-
sembly language, and can be covered in a single semester. Chapters 11 through 14 intro-
duce advanced topics, and can be included in a second course or as selected extensions to
a first course.

Chapter 1 introduces students to bits and bytes, base conversions, and basic micro-
processor architecture. Chapter 2 covers a pseudocomputer, the Easy4. It allows students
to “see” the relationship between registers and memory by graphically displaying them on
the screen. A simple stack is also introduced in this chapter, as well as instruction fetch,
decode, and execute cycles.

Segments are introduced in Chapter 3 and are fully explained in Chapter 5. Since
.COM files are easier to understand, they are introduced before .EXE files. This gives the
student time to learn the 80x86 assembly language mnemonics before studying segmenta-
tion and the .EXE structure. This is a departure from most assembly language texts, which
tend to introduce .EXE files when they are covering assembly instructions.

Chapter 6 introduces the ASY.LIB library provided on disk with the book. This li-
brary contains many common I/O routines for the keyboard, screen, and printer. The
80x86 stack is also introduced in this chapter. Chapter 7 provides some useful PC exam-
ples using the ASY.LIB library, including the clock timer, toggle keys, keyboard buffer,
and writing directly to screen memory and printer ports. Chapter 8 covers basic string
operations.

Chapter 9 gives some basic floating point operations, including transcendental func-
tions. This chapter gives examples that engineering technology students may find useful.
Chapter 10 covers interrupts and interrupt service routines. Examples are given using the
screen and mouse.

Chapter 11 provides unique coverage of an assembly text. Using Microsoft C as an
example, it disassembles basic C programs to show the equivalent 80x86 assembly lan-
guage version of the .EXE file. This helps students understand how C is converted into as-
sembly when compiled. There is also coverage of intermingling assembly and C code, in-
cluding passing variables from C to assembly and back. Terminate and stay resident
programs are also covered in this chapter, using combined C and assembly routines.

Chapter 12 covers the PC boot process and the memory map. Programs used to view
the memory map are also covered. Chapter 13 covers advanced C memory and I/O rou-
tines, mainly oriented toward tips and techniques not covered in a standard introductory
course in C. Chapter 14 covers mnemonics from the 80286, 80386, and 80486. Finally,
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Appendix H contains a set of interfacing experiments including I/O ports, analog measure-
ments that include maximum, minimum, DC, and RMS voltage readings, and frequency
measurements. Also included is an experiment on creating an ISR for interrupt driven I/O.
Many hours of work have gone into the writing of this text. Thanks to all of the stu-
dents at Miami University who have patiently tolerated the many revisions. We would also
like to thank the following reviewers for their invaluable feedback: Mike Awwad, DeVry
Institute; Boris Kovalchuk, Central Washington University; Michael A. Miller, DeVry In-
stitute; and Gregory S. Romine, Indiana University-Purdue University at Indianapolis.

David Hergert
Nancy Thibeault
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CHAPTER 1
Microprocessor Architecture

THE STRUCTURE OF A COMPUTER

In twenty years’ time, computers have shrunk from large mainframes that took up a whole
room, to laptops that weigh less than six pounds. At the same time, microcomputers have
advanced from a small box with no keyboard or monitor to multimedia machines capable
of editing motion pictures. This book is about PC-based (or IBM®-compatible) microcom-
puter architecture. In a microcomputer, the electronic hardware that makes up the com-
puter is contained in a variety of integrated circuits including the microprocessor, clock,
memory, and port chips (Figure 1.1).

The microprocessor chip includes all of the circuitry needed to implement instruc-
tions coming from the operating system or programming language. In mainframe com-
puters, the processor is contained in many separate circuits. In microcomputers, the
processor has been squeezed onto one chip. Program instructions and data are stored in
memory chips. Today’s microcomputers have far more memory than a mainframe of
thirty years ago had. Instructions are stored in one section of memory, and data in another.
In order to interpret instructions stored in memory, a microprocessor must first fetch each
instruction from memory before interpreting it.

Port chips control access to outside devices such as the keyboard, monitor, mouse,
and printer. Think of a computer port chip as being similar to a shipping port. When a boat
laden with goods comes from overseas, the boat must first stop at an assigned port before
the goods can enter the country. The same is true for a computer port. When data comes
from an outside source, it must be routed to a port in order for the microprocessor to have
access to it. The microprocessor has instructions that allow it to send information to or re-
ceive information from a port.

All computers have a basic operational structure as shown in Figure 1.2. The Oper-
ating System and high-level Programming Language control the Electronic Hardware
that comprises the physical layer (Layer 1) of the computer. The programming language
could be BASIC, Pascal, C, FORTRAN, or any high-level language. When the computer
is turned on, a core routine loads the operating system in first (this is called a system boot),

1
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and the programming language is then loaded by the operating system. At higher layers,
the computer is easier to use and program.

The Application Program, Layer 4, is a program that is frequently used, such as a
spreadsheet, CAD program, or word processor. It is written in a programming language
(Layer 3). Most modern software is written in either the C or C++ language or a combina-
tion of Assembly and C. The operating system is also written in a combination of As-
sembly and C. The programming language communicates with the operating system
(Layer 2) to control the electronic hardware (Layer 1). Note the arrows connecting the four
layers in Figure 1.2. All four are intertwined. This book slowly unravels the connection be-
tween them. You will study the underlying glue that holds them together. This “glue”
is called machine language. Applications programs, programming languages, and the
operating system must all be converted to a series of instructions that the microprocessor



