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PREFACE

This book is designed to meet the needs of a majority of students taking
a two-semester (or three-quarter) course in calculus at a college or univer-
sity. The text leans heavily on the intuitive approach, gives many illus-
trative examples, emphasizes physical applications wherever suitable,
and has a large selection of graded exercises. Definitions and theorems
are stated with care and proofs of simple theorems are given in full.

The changes in this second edition take into account the many sugges-
tions we have received from teachers and students who used the first
edition during the last several years.

In Chapter 1 we discuss inequalities with emphasis on the use of the
absolute-value symbol. An important change occurs in this edition with
our introduction of set notation, which we employ in Chapter 2 on func-
tions and funectional notation. It is important for the student to under-
stand and develop facility in the use of set notation. We use it in those
situations where genuine ambiguity could result from the employment
of classical notation. However, there are times when the use of set nota-
tion is cumbersome and does not add to the understanding of the subject
matter. On such occasions, and when the additional precision of set no-
tation is not needed, we continue to use standard (traditional) notations.

Chapter 3 contains an intuitive introduction to limit and the develop-
ment of the derivative. In Chapter 4 we give a precise treatment of limit
and we state without proof the most useful basic properties. The in-
tuitive material on integration, previously in Chapter 3, has been moved
to the end of Chapter 6, immediately before the chapter devoted to the
definition and calculation of integrals. These improvements in order and
articulation result from the classroom experience of our colleagues and
many other users of the text.

Chapters 5 and 6 give a thorough development of the differentiation of
algebraic functions and applications to problems of maxima and minima,
related rates, and approximation.
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Chapter 7 begins with a careful definition of area (Jordan content).
This leads to the definition of integral and to two forms of the Funda-
mental Theorem of Calculus. There are applications to problems of
liquid pressure and work, but these may be omitted without loss of
continuity in the presentaion.

The natural logarithm is defined by the integral, and the exponen-
tial function is defined as its inverse. These topics, as well as the differen-
tiation and integration of trigonometric and inverse trigonometric
functions, are taken up in Chapters 8 and 9. The sections on relations and
inverse functions have been completely rewritten to obtain both greater
precision and improved exposition.

Vectors in the plane are the subject of Chapter 12. Certain logical dif-
ficulties are avoided by defining a vector as an equivalence class of direc-
ted line segments. Furthermore, the discussion of equivalence classes
puts this abstract concept in a natural setting. The statements and
proofs of the theorems in this chapter have been revised extensively in
this edition. For those who wish to study vectors early in the course, the
material in Chapter 12 could easily be inserted after Chapter 4.

Chapters 13 and 14 discuss techniques in integration and their applica-
tions.

Chapter 15 is devoted to solid analytic geometry, with coordinates
used throughout. Once the student has mastered this material, the appli-
cations using vectors in three dimensions, taken up in Chapter 16, may
be attacked with confidence.

The study of infinite series, the subject of Chapter 17, completes the
customary course in the calculus of functions of one variable. Chapters
18 and 19 are devoted to the initial topics in the calculus of functions of
several variables. Part.al differentiation, line integrals, and applications
are taken up in Chapter 18. A definition of volume (Jordan content),
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analogous to that given for area in Chapter 7, is discussed in Chapter
19. The elements of multiple integration with applications to area, vol-
ume, and mass are treated. In addition there are a number of physical
applications to problems concerning center of mass, moment of inertia,
and so forth.

The last chapter contains an elementary study of linear algebra. This
chapter replaces the unit on differential equations which formerly ap-
peared at the end of most texts on calculus. The presentation here is
intended as a beginning study. Additional material on linear algebra, as
well as a broad selection of topics usually given in advanced calculus
courses, may be found in our text Modern Mathematical Analysis
(Addison-Wesley, 1964). Chapters 6 through 17 of that book cover
topics in infinite series (including Fourier series), Green’s and Stokes’
theorems, linear transformations and their representations, and ordinary
differential equations.

An important feature of the second edition is the addition of a large
number of challenging exercises, which have been inserted at the end of
various sections. Also, in order to increase the variety, many of the reg-
ular exercises have been changed.

The presentation of hyperbolic functions has been changed in this
edition. All the material formerly in the body of the text has been placed
in a special appendix (Appendix 3). In this way, the treatment of hyper-
bolic functions can be emphasized for those students in engineering and
technology who wish it, while the subject can be skipped or assigned as
outside reading to those students for whom the subject is of only mar-
ginal interest.

This edition contains several appendices which we hope will add to the
versatility of the text. Appendix 1 discusses the axioms of algebra and
number systems. This appendix not only is useful as additional reading
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2 INEQUALITIES

1. INEQUALITIES*

Almost all high school students learn plane geometry as a single logical devel-
opment in which theorems are proved on the basis of a system of axioms or
postulates. Unlike plane geometry, however, algebra has traditionally been
taught in high school without the aid of a formal logical system. In this
method the student simply learns a few rules—or many—for manipulating
algebraic quantities; these rules lead to success in solving problems but do
not shed any light on the structure of algebra. In recent years, however,
mathematicians have developed a number of new experimental high school
programs which present algebra in a logical manner analogous to the one
first developed by Euclid for plane geometry.

The usual rules of algebra are logical consequences of the system of axioms
known as the Axioms of Algebra. To prove the rules we use for manipulating
algebraic expressions directly from the Axioms, as in Euclidean geometry,
would be cumbersome and unwieldy. Therefore we shall assume that the
reader is familiar with the usual laws of algebra and begin with a discussion
of inequalities. The Axioms of Algebra are given in Appendix 4 at the end
of the book, and we recommend their study to students unfamiliar with them.

In elementary algebra and geometry we study equalities almost exclu-
sively. The solution of linear and quadratic algebraic equations, the con-
gruence of geometric figures, and relationships among various trigonometric
functions are topics concerned with equality. As we progress in the develop-
ment of mathematical ideas—especially in that branch of mathematics of
which calculus is a part—we shall see that the study of inequalities is both
interesting and useful. An inequality is involved when we are more concerned
with the approximate size of a quantity than we are with its true value. Since
the proofs of some of the most important theorems in calculus depend on
certain approximations, it is essential that we develop a facility for working
with inequalities.

We shall be concerned with inequalities among real numbers, and we begin
by recalling some familiar relationships. Given that a and b are any two real
numbers, the symbol

a<b

means that a is less than 5.1 We may also write the same inequality in the
opposite direction,

b > a,
which is read b is greater than a.

* This chapter and Chapter 2 consist of review material for many students of cal-
culus. Students who do not have a thorough working knowledge of inequalities
should begin here. Readers familiar with inequalities may start with Chapter 2.

t Which is true if and only if b — a is positive (see Appendix 1, §2).
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The rules for handling inequalities can be proved on the basis of the
Axioms for Algebra. The rules themselves are only slightly more complicated
than the ones we learned in algebra for equalities. However, the differences
are so important that we state them as four Theorems about Inequalities,
and they must be learned carefully.

Theorem 1. Ifa < band b < ¢, then a < c¢. In words: if a is less than b and
b is less than c, then a is less than c.

Theorem 2. If c is any number and a < b, then itis also truethata +c < b + ¢
and a — ¢ < b — ¢. In words: if the same number is added to or subtracted
from each side of an inequality, the result is an inequality in the same direction.

Theorem 3. Ifa < bandc < dthena + ¢ < b + d. That is, inequalities in
the same direction may be added.

It is important to note that in general inequalities may not be subtracted.
For example, 2 < 5 and 1 < 7. We can say, by addition, that 3 < 12, but
note that subtraction would state the absurdity that 1 is less than —2.

Theorem 4. If a < b and c is any positive number, then
ac < be,

while if ¢ is a negative number, then
ac > be.

In words: multiplication of both sides of an inequality by the same positive number
preserves the direction, while multiplication by a negative number reverses the
direction of the inequality.

Since dividing an inequality by a number d is the same as multiplying it by
1/d, we see that Theorem 4 applies for division as well as for multiplication.
From the geometric point of view we associate a horizontal axis with the
totality of real numbers. The origin may be selected at any convenient point,
with positive numbers to the right and negative numbers to the left (Fig. 1-1).

~

1-1 1-2

For every real number there will be a corresponding point on the line and,
conversely, every point will represent a real number. Then the inequality
a < b may be read: a is to the left of b. This geometric way of looking at
inequalities is frequently of help in solving problems. It is also helpful to
introduce the notion of an interval of numbers or points. If a and b are num-
bers (as shown in Fig. 1-2), then the open interval from a to b is the collection



