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PREFACE

Bioseparations has grown in importance and changed in emphasis. The first book on the topic,
Bioseparations by Belter, Cussler, and Hu was published in 1988 and set the stage for recog-
nition of bioseparations as an important chemical engineering unit operation. This was a pio-
neering effort, in my opinion, since it organized and introduced a new discipline. The
applications were primarily for products derived from microorganisms that had not been geneti-
cally modified, and whose products were principly small to intermediate molecular weight
molecules. This first book introduced engineering principles to the purification of biochemi-
cals.

The next major contribution to the bioseparations literature was by Wheelwright in a book
entitled Protein Purification: Design and Scale-up of Downstream Processing. This book was
published in 1991, when the new biotechnology industry was just beginning to enter a dramatic
new growth phase in protein biopharmaceuticals. It introduced engineers to the world of sepa-
rations applied to biotherapeutic proteins whose production was made possible through rDNA
technology. These proteins, including bovine growth hormone, interferon, tissue plasminogen
activator, and insulin, would be difficult if not impossible to generate by any other means. The
new biology, that is, the genetic engineering applied to microorganisms to make protein bio-
pharmaceuticals—required an understanding of “the fundamentals of engineering and their
practice as applied to large scale engineering.” This was another pioneering book, both due to
its fresh content, and its message that “the hybridization of the biochemist or protein chemist
and the chemical engineer or process engineer creates a new discipline.”

Bioseparations Engineering: Principle, Practice and Economics attempts to carry this mes-
sage forward. This book is being completed at the beginning of what is predicted to be the cen-
tury of biotechnology, as well as an era of multidisciplinary approaches to solving problems in
engineering, science, and society. The industry has evolved from one based on fermentations
involving recombinant bacteria and mammalian cells, to one where the human genome will be
deciphered by the time that this book is in print. The technologies that have made sequencing
of the human genome possible are being applied to numerous, and less complex, organisms.
The knowledge of the genetic basis of biological functioning is growing at an astronomical rate.
With this knowledge comes the challenges and opportunities of applying information derived
from genomes to the production of therapeutic compounds, specialty biochemicals, functional
food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable
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resources. The directed application of cellular metabolism to produce large quantities of bio-
products is impressive. However, without the ability to recover and purify these products at
relatively large scales, it would be impossible to provide them in quantities that will benefit so-
ciety. Bioseparations will be an important factor for fulfilling biotechnology’s promise as the
new engine of growth and benefits for the global economy.

Bioseparations Engineering attempts to convey the principles of bioseparations in a manner
that will apply to bioproducts not yet invented, and biological molecules not yet produced on a
large scale, as well as the molecules that form the basis of the current industry. Existing prod-
ucts and processes are used to teach the principles. As described here, bioseparations engineer-
ing is the multidisciplinary application of fundamental engineering and biological principles to
the design of adsorbents, systems, and processes for the separation of biological molecules.
Where possible, mechanistic analysis of key phenomena at a microscopic scale are presented.
Examples and case studies are intended to assist the reader in extrapolating principles to his or
her needs in practicing specific types of bioseparation whether they are for food, pharmaceuti-
cal, or biochemical products. Footnotes are provided to give a short background of the eco-
nomic impact of the product and/or process being considered.

The book is the result of 10 years of teaching and developing this subject matter starting in
a mezzanine level course (graduate students and last semester seniors). Since then it has devel-
oped to a graduate level course entitled Bioseparations Engineering. The student’s enthusiasm
contributed to my motivation for completing this book. To the students and alumni of ABE 580
and my graduate students at Purdue University, I thank you for your encouragement, contribu-
tions, and interest. To the readers of Bioseparations Engineering, 1 hope you find our efforts
worthwhile.

Michael Ladisch
Purdue University
West Lafayette, Indiana
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