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PREFACE

Based on chaos theory two very important points are clear: (1) random-
looking aperiodic behavior may be the product of determinism, and (2)
nonlinear problems should be treated as nonlinear problems and not as
simplified linear problems.

The theoretical aspects of chaos have been presented in great detail
in several excellent books published in the last five years or so. However,
while the problems associated with applications of the theory—such as
dimension and Lyapunov exponents estimation, chaos and nonlinear pre-
diction, and noise reduction—have been discussed in workshops and ar-
ticles, they have not been presented in book form.

This book has been prepared to fill this gap between theory and ap-
plications and to assist students and scientists wishing to apply ideas from
the theory of nonlinear dynamical systems to problems from their areas
of interest. The book is intended to be used as a text for an upper-level
undergraduate or graduate-level course, as well as a reference source for
researchers.

My philosophy behind writing this book was to keep it simple and
informative without compromising accuracy. I have made an effort to
present the concepts by using simple systems and step-by-step derivations.
Anyone with an understanding of basic differential equations and matrix
theory should follow the text without difficulty. The book was designed to
be self-contained. When applicable, examples accompany the theory. The
reader will notice, however, that in the later chapters specific examples
become less frequent. This is purposely done in the hope that individuals
will draw on their own ideas and research projects for examples.

I would like to thank Drs. P. Berge, M. Casdagli, J. Crutchfield, K. P.
Georgakakos, L. Glass, A. Goldberger, C. Grebogi, E. J. Kostelich, M. D.
Mundt, J. Nese, G. Nicolis, and J. Theiler for providing publication quality
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figures for use in the book. I would also like to thank Drs. M. Casdagli, D.
Farmer, H. L. Swinney. and J. Theiler for providing me with reprints of
their latest work. Thanks are also extended to all the scientists who gave
me permission to reproduce figures from their papers. I also thank Donna
Schenstron and my students Hong-Zhong Lu, Jianping Zhuang, John Roth,
and Christine Young for producing several of the figures, and my friend
and collaborator Dr. James Elsner for his ideas and discussions.

For me, writing this book was an experience. For the reader, I hope
it will be a pleasure.

Anastasios A. Tsonis
Milwaukee, Wisconsin
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CHAPTER 1

INTRODUCTION

Simplicity and regularity are associated with predictability. For example,
because the orbit of the earth is simple and regular, we can always predict
when astronomical winter will come. On the other hand, complexity and
irregularity are almost synonymous with unpredictability.

Those who try to explain the world we live in always hope that in the
realm of the complexity and irregularity observed in nature, simplicity
would be found behind everything and, that, finally, unpredictable events
would become predictable. That complexity and irregularity exist in nature
is obvious. We need only look around us to realize that practically every-
thing is random in appearance. Or is it? Clouds, like many other structures
in nature, cor:¢ in an infinite number of shapes. Every cloud is different,
yet everybody will recognize a cloud. Clouds, though complex and irregular,
must on the whole possess a uniqueness that distinguishes them from other
structures in nature. The question remains: Is their irregularity completely
random, or is there some order behind their irregularity?

Over the last decades physicists, mathematicians, astronomers, biol-
ogists, and scientists from many other disciplines have developed a new
way of looking at complexity in nature. This way has been termed chaos
theory. Chaos is mathematically defined as “randomness” generated by
simple deterministic systems. This randomness is a result of the sensitivity
of chaotic systems to the initial conditions. However, because the systems
are deterministic, chaos implies some order. This interesting “mixture’ of
randomness and order allows us to take a different approach in studying
processes that were thought to be completely random. Apparently, the
founders of chaos theory had a very good sense of humor, since chaos is
the Greek word for the complete absence of order.

The mathematical foundations of what is now called chaos were laid
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down a long time ago by Poincaré in his work on bifurcation theory. How-
ever, due to the nonlinear character of the problems involved and the
absence of computers, the discovery of chaos did not take place until 1963.
That year Edward Lorenz published his monumental work entitled De-
terministic Nonperiodic Flow. For the first time it was shown that a system
of three nonlinear ordinary differential equations exhibits final states that
are nonperiodic. Soon after that the theory of chaos developed to what
many consider the third most important discovery in the 20th century
after relativity and quantum mechanics.

First, the hidden beauty of chaos was revealed by studying simple
nonlinear mathematical models such as the logistic equation, the Hénon
map, the Lorenz system, and the Rossler system. Beautiful “strange at-
tractors” that described the final states of these systems were produced and
studied, and routes that lead a dynamical system to chaos were discovered.

After that the study of chaos moved to the laboratory. Ingenious ex-
periments were set up, and low-dimensional chaotic behavior was observed.
These experiments elevated chaos from being just a mathematical curiosity
and established it as a physical reality.

The next step was to search for chaos outside the ““‘controlled” labo-
ratory—in nature. This presented an enormous challenge. Now the sci-
entists had to deal with an “uncontrolled” system whose mathematical
formulation was not always known accurately. Up to this point, the exis-
tence of low-dimensional chaos in physical systems has not been demon-
strated beyond any doubt. Many indications have been presented, but a
definite answer has not yet emerged. More work is needed in this area.

The acceptance of a new theory depends on its ability to make pre-
dictions. For example, the theory of relativity predicted that light must
bend in the presence of a strong gravitational field. This prediction (among
others) was soon verified, and the theory became widely accepted. Similar
comments can be made about quantum mechanics and other accepted
theories. Chaos theory tells us that nonlinear deterministic systems are
sensitive to initial conditions and because of that their predictive power is
lost very quickly. At the same time we have discovered that processes that
appear random may be chaotic, and thus they should be treated as deter-
ministic processes. Would it be possible that the underlying determinism
of such processes could be used to improve their otherwise limited pre-
dictability? Many argued that if chaos was to make an impact it had to be
used to obtain improved predictions. Lately, nonlinear prediction has be-
come a major area of research, and some very exciting results have been
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reported. Other advances in the theory include the use of chaos to reduce
noise in the data.

The book is divided into three parts. The first part (Chapters 1-4)
reviews concepts from mathematics, physics, and fractal geometry that we
will be using in later chapters. These concepts include stability analysis,
conservative systems, and ergodic systems. The second part (Chapters 5-
7) presents the fundamentals behind the theory of chaos. Chapter 5 intro-
duces the reader to strange attractors and their characteristics. Chapter 6
provides an overview of bifurcation theory and routes to chaos. Chapter
7 is devoted to the existence of chaos in Hamiltonian, quantum, and partial
differential equation (PDE) systems. The third part (Chapters 8-11) is
dedicated to the applications of chaos theory. Chapter 8 is concerned with
reconstructing the dynamics from observables. Here the “burning’ question
of the necessary number of points is treated in detail. Chapter 9 is devoted
to the evidence of chaos in controlled and uncontrolled systems. Chapter
10 introduces the reader to the rapidly growing area of nonlinear prediction.
Chapter 11 gives an introduction to two other important research areas,
namely shadowing and noise reduction.
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