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Preface

This book is intended both as a reference book for professional econometri-
cians and as a graduate textbook. If it is used as a textbook, the material
contained in the book can be taught in a year-long course, as I have done at
Stanford for many years. The prerequisites for such a course should be one
year of calculus, one quarter or semester of matrix analysis, one year of
intermediate statistical inference (see list of textbooks in note 1 of Chapter
3), and, preferably, knowledge of introductory or intermediate econometrics
(say, at the level of Johnston, 1972). This last requirement is not necessary, but
I have found in the past that a majority of economics students who take a
graduate course in advanced econometrics do have knowledge of introduc-
tory or intermediate econometrics.

The main features of the book are the following: a thorough treatment of
classical least squares theory (Chapter 1) and generalized least squares theory
(Chapter 6); a rigorous discussion of large sample theory (Chapters 3 and 4);a
detailed analysis of qualitative response models (Chapter 9), censored or
truncated regression models (Chapter 10), and Markov chain and duration
models (Chapter 11); and a discussion of nonlinear simultaneous equations
models (Chapter 8).

The book presents only the fundamentals of time series analysis (Chapter 5
and a part of Chapter 6) because there are several excellent textbooks on the
subject (see the references cited at the beginning of Chapter 5). In contrast, the
models I discuss in the last three chapters have been used extensively in recent
econometric applications but have not received in any textbook as complete a
treatment as I give them here. Some instructors may wish to supplement my
book with a textbook in time series analysis.

My discussion of linear simultaneous equations models (Chapter 7) is also
brief. Those who wish to study the subject in greater detail should consult the
references given in Chapter 7. I chose to devote more space to the discussion of
nonlinear simultaneous equations models, which are still at an early stage of
development and consequently have received only scant coverage in most
textbooks.
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In many parts of the book, and in all of Chapters 3 and 4, I have used the
theorem-proof format and have attempted to develop all the mathematical
results rigorously. However, it has not been my aim to present theorems in full
mathematical generality. Because lintended this as a textbook rather thanasa
monograph, I chose assumptions that are relatively easy to understand and
that lead to simple proofs, even in those instances where they could be relaxed.
This will enable readers to understand the basic structure of each theorem and
to generalize it for themselves depending on their needs and abilities. Many
simple applications of theorems are given either in the form of examples in the
text or in the form of exercises at the end of each chapter to bring out the
essential points of each theorem.

Although this is a textbook in econometrics methodology, I have included
discussions of numerous empirical papers to illustrate the practical use of
theoretical results. This is especially conspicuous in the last three chapters nf
the book.

Too many people have contributed to the making of this book through the
many revisions it has undergone to mention all their names. I am especially
grateful to Trevor Breusch, Hidehiko Ichimura, Tom MaCurdy, Jim Powell,
and Gene Savin for giving me valuable comments on the entire manuscript. I
am also indebted to Carl Christ, Art Goldberger, Cheng Hsiao, Roger
Koenker, Tony Lancaster, Chuck Manski, and Hal White for their valuable
comments on parts of the manuscript. I am grateful to Colin Cameron, Tom
Downes, Harry Paarsch, Aaron Han, and Choon Moon for proofreading and
to the first three for correcting my English. In addition, Tom Downes and
Choon Moon helped me with the preparation of the index. Dzung Pham has
typed most of the manuscript through several revisions; her unfailing patience
and good nature despite many hours of overtime work are much appreciated.
David Criswell, Cathy Shimizu, and Bach-Hong Tran have also helped with
the typing. The financial support of the National Science Foundation for the
research that produced many of the results presented in the book is gratefully
acknowledged. Finally, I am indebted to the editors of the Journal of Eco-
nomic Literature for permission to include in Chapter 9 parts of my article
entitled “Qualitative Response Models: A Survey” (Journal of Economic
Literature 19:1483-1536, 1981) and to North-Holland Publishing Company
for permission to use in Chapter 10 the revised version of my article entitled
“Tobit Models: A Survey” (Journal of Econometrics 24:3-61, 1984).
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1 Classical Least Squares Theory

In this chapter we shall consider the basic results of statistical inference in the
classical linear regression model — the model in which the regressors are inde-
pendent of the error term and the error term is serially uncorrelated and has a
constant variance. This model is the starting point of the study; the models to
be examined in later chapters are modifications of this one.

1.1 Linear Regression Model

In this section let us look at the reasons for studying the linear regression
model and the method of specifying it. We shall start by defining Model 1, to
be considered throughout the chapter.

1.1.1 Introduction

Consider a sequence of K random variables (), X, X3, - « . » X&),
t=12,...,T. Define a T-vector y= (¥, V5,...,¥r), a (K—1)-
vector X =(Xy, X3,. . ., Xg), and a [(K—1)X T)-vector x*=
(xt, x3",. . . , x¥). Suppose for the sake of exposition that the joint density

of the variables is given by f(y, x*, 6), where @ is a vector of unknown parame-
ters. We are concerned with inference about the parameter vector @ on the
basis of the observed vectors y and x*.

In econometrics we are often interested in the conditional distribution of
one set of random variables given another set of random variables; for exam-
ple, the conditional distribution of consumption given income and the condi-
tional distribution of quantities demanded given prices. Suppose we want to
know the conditional distribution of y given x*. We can write the joint density
as the product of the conditional density and the marginal density as in

J(y, x*, 6) =f(yIx*, 6,)f(x* 6,). (LLD)

Regression analysis can be defined as statistical inferences on 6,. For this
purpose we can ignore f(x*, 8,), provided there is no relationship between 6,
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and 6,. The vector y is called the vector of dependent or endogenous variables,
and the vector x* is called the vector of independent or exogenous variables.

In regression analysis we usually want to estimate only the first and second
moments of the conditional distribution, rather than the whole parameter
vector 6,. (In certain special cases the first two moments characterize 6,
completely.) Thus we can define regression analysis as statistical inference on
the conditional mean E(y]x*) and the conditional variance-covariance matrix
W(y|x*). Generally, these moments are nonlinear functions of x*. However, in
the present chapter we shall consider the special case in which E(y,|x*)is equal
to E(y|x{) and is a linear function of x¥, and F(y|x*) is a constant times an
identity matrix. Such a model is called the classical (or standard) linear
regression model or the homoscedastic (meaning constant variance) linear
regression model. Because this is the model to be studied in Chapter 1, let us
call it simply Model 1.

1.1.2 Model 1
By writing x, = (1, x**')’, we can define Model 1 as follows. Assume
yp=xB+u, t=12,...,T (1.1.2)

where , is a scalar observable random variable, 8 is a K-vector of unknown
parameters, X, is a K-vector of known constants such that =7, x,x/ is nonsin-
gular, and u, is a scalar, unobservable, random variable (called the error term
or the disturbance) such that Eu, = 0, Vi, = 02 (another unknown parameter)
for all ¢, and Eu,u,= 0 for t # s.

Note that we have assumed x* to be a vector of known constants. This is
essentially equivalent to stating that we are concerned only with estimating
the conditional distribution of y given x*. The most important assumption of
Model 1 is the linearity of E(y,|x*); we therefore shall devote the next subsec-
tion to a discussion of the implications of that assumption. We have also made
the assumption of homoscedasticity (Vu, = o2 for all ¢) and the assumption of
no serial correlation (Eu, u, = 0 for t # s), not because we believe that they are
satisfied in most applications, but because they make a convenient starting
point. These assumptions will be removed in later chapters.

We shall sometimes impose additional assumptions on Model 1 to obtain
certain specific results. Notably, we shall occasionally make the assumption of
serial independence of {1,} or the assumption that u, is normally distributed.
In general, independence is a stronger assumption than no correlation, al-
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though under normality the two concepts are equivalent. The additional
assumptions will be stated whenever they are introduced into Model 1.

1.1.3 Implications of Linearity

Suppose random variables y, and x¥* have finite second moments and their
variance-covariance matrix is denoted by

Ve o3 ol
la)- 1o 5]
012 2
Then we can always write

ve=F+x!'B +, (1.1.3)

where B, =330y, fo = Ey, — 01,25 Exy, Ev, =0, Vv, =0} —07,23)0,,,
and Ex}v, = 0. It is important to realize that Model 1 implies certain assump-
tions that (1.1.3) does not: (1.1.3) does not generally imply linearity of
E(y,Ix*) because E(v,/x}) may not generally be zero.

We call 8, + x}*’/ 8, in (1.1.3) the best linear predictor of y, given x7 because
fo and B, can be shown to be the values of b, and b, that minimize
E(y, — by — x**'b, )% In contrast, the conditional mean E(y,|x¥) is called the
best predictor of y, given x}' because E[y, — E(y,|x¥)]* = E[y— g(x*)]? for
any function g.

The reader might ask why we work with eq. (1.1.2) rather than with (1.1.3).
The answer is that (1.1.3) is so general that it does not allow us to obtaih
interesting results. For example, whereas the natural estimators of 8, and §,
can be defined by replacing the moments of y, and x}* that characterize 8, and
B, with their corresponding sample moments (they actually coincide with the
least squares estimator), the mean of the estimator cannot be evaluated with-
out specifying more about the relationship between x¥* and v,.

How restrictive is the linearity of E(y,|x*)? It holds if y, and x* are jointly
normal or if y, and x}* are both scalar dichotomous (Bernoulli) variables.! But
the linearity may not hold for many interesting distributions. Nevertheless,
the linear assumption is not as restrictive as it may appear at first glance
because x7* can be variables obtained by transforming the original indepen-
dent variables in various ways. For example, if the conditional mean of y,, the
supply of good, is a quadratic function of the price, p,, we can put
X! = (p,, P?)’, thereby making E(y,|x}) linear.
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1.1.4 Matrix Notation

To facilitate the subsequent analysis, we shall write (1.1.2) in matrix notation
as

y=Xg+u, (1.1.4)
where Y=, Y2, . ..,y w=(U,t,...,u;), and X=
(X;, X35 . - . » X7)’, In other words, X is the T X K matrix, the tth row of
which is x;. The elements of the matrix X are described as

- .
xll x12 « e le
Xz X2 ... Xox
x=| . .
LXr1 X2 . - . Xyx

If we want to focus on the columns of X, we can write X=
[Xay» X@)5 -+ - » Xy ], where each x;, is a T-vector. If there is no danger of
confusing x;;, with x,, we can drop the parentheses and write simply x;. In
matrix notation the assumptions on X and u can be stated as follows; X’ X is
nonsingular, which is equivalent to stating rank (X)=Kif T = K; Eu=20;
and Euu’ = ¢2I, where Iis the 7 X Tidentity matrix. (Whenever the size of
an identity matrix can be inferred from the context, we write it simply as 1.)

In the remainder of this chapter we shall no longer use the partition
B’ = (Po, B}); instead, the elements of B will be written as f=
(B1s Bas - - . » Bx)’. Similarly, we shall not necessarily assume that x;, is the
vector of ones, although in practice this is usually the case. Most of our results
will be obtained simply on the assumption that X is a matrix of constants,
without specifying specific values.

1.2 Theory of Least Squares

In this section we shall define the least squares estimator of the parameter 8in
Model 1 and shall show that it is the best linear unbiased estimator. We shall
also discuss estimation of the error variance o2

1.2.1 Definition of Least Squares Estimators of § and o2

The least squares (LS) estirnator ﬁ of the regression parameter #in Model | is
defined to be the value of § that minimizes the sum of squared residuals?
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S(B) = (y—XB)'(y — XB) (1.2.1)
=y'y—2y'Xg+ p'X'XB.
Putting the derivatives of S(8) with respect to § equal to 0, we have
§=—2X’y+2X’Xﬂ=0, (1.2.2)
B
where d5/3f8 denotes the K-vector the ith element of which is 45/38;, §; being
the ith element of B. Solving (1.2.2) for B gives

B=(X"X)1X"y. (1.2.3)

Clearly, S(f) attains the global minimum at ﬁ

Let us consider the special case K = 2 and X, = (1, x,,) and represent each
of the T-observations (y,, x,,) by a point on the plane. Then, geometrically,
the least squares estimates are the intercept and the slope of a line drawn in
such a way that the sum of squares of the deviations between the points and the
line is minimized in the direction of the y-axis. Different estimates result if the
sum of squares of deviations is minimized in any other direction.

Given the least squares estimator f, we define

i=y—XB (1.2.4)

and call it the vector of the least squares residuals. Using i, we can estimate g2
by

o= T, (1.2.5)

called the least squares estimator of a2, although the use of the term least
squares here is not as compelling as in the estimation of the regression
parameters.

Using (1.2.4), we can write

y=XB+ i =Py + My, (1.2.6)

where P = X(X’X)"!'X’and M = I — P, Because ii is orthogonal to X (that is,
i’ X = 0), least squares estimation can be regarded as decomposing y into two
orthogonal components: a component that can be written as a linear combi-
nation of the column vectors of X and a component that is orthogonal to X.
Alternatively, we can call Py the projection of y onto the space spanned by the
column vectors of X and My the projection of y onto the space orthogonal to
X. Theorem 14 of Appendix 1 gives the properties of a projection matrix such
as P or M. In the special case where both y and X are two-dimensional vectors
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Py

Figure 1.1 Orthogonal decomposition of y

(that is, K= 1 and T = 2), the decomposition (1.2.6) can be illustrated as in
Figure 1.1, where the vertical and horizontal axes represent the first and
second observations, respectively, and the arrows represent vectors.

From (1.2.6) we obtain

y'y =y'Py +y’My. (1.2.7)

The goodness of fit of the regression of y on X can be measured by the ratio
y’Py/y’y, sometimes called R2. However, it is more common to define R? as
the square of the sample correlation between y and Py:

Rz = M_
y'Ly - y’PLPy’
where L = I — T-'1” and 1denotes the T-vector of ones. If we assume one of

the coluimns of X is 1 (which is usually the case), we have LP = PL. Then we
can rewrite (1.2.8) as

re=YLPLy . y'My

y’Ly y'Ly’

Thus R? can be interpreted as a measure of the goodness of fit of the regression

of the deviations of y from its mean on the deviations of the columns of X from

their means. (Section 2.1.4 gives a modification of R? suggested by Theil,
1961.)

(1.2.8)

(1.2.9)

1.2.2 Least Squares Estimator of a Subset of 8

It is sometimes useful to have an explicit formula for a subset of the least
squares estimates ﬂ Suppose we partition ,8’ = ( ﬂ, , ,8, ),where ﬂ, isa K -vec-
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tor and ﬂz is a K;-vector such that X, + K, = X Partition X conformably as
= (X, X;). Then we can write X’ Xﬂ X'y as

,Xlﬂl + X{ Xzﬂz Xy (1.2.10)
and
XX, B, + X;X, B, = Xuy. (.2.11)
Solving (1.2.11) for ﬂz and inserting it into (1.2.10), we obtain
By = (XiMX, )" X{M,y, (12.12)
where M, = I — X, (X4X, )X} Similarly,
B, = (XiMLX,) ' X5Myy, (1.2.13)

Where Ml =]- xl (X',x, )'lXi .

In Model 1 we assume that X is of full rank, an assumption that implies that
the matrices to be inverted in (1.2.12) and (1.2.13) are both nonsingular.
Suppose for a moment that X, is of full rank but that X, is not. In this case £,
cannot be estimated, but B, still can be estimated by modifying (1.2.12) as

B, = (X{M2X, )~ 'X{Mty, (1.2.14)

where M?# =1 — X¥(X%' X$)~'X2", where the columns of X¥consist of a maxi-
mal number of linearly independent columns of X, , provided that X;MZ#X, is
nonsingular. (For the more general problem of estimating a linear combina-
tion of the elements of B, see Section 2.2.3.)

1.2.3 The Mean and Variance of 8 and 42
Inserting (1.1.4) into (1.2.3), we have
B=X'X)X"y (1.2.15)
=g+ X’'X)"'X'u.

Clearly, Eﬁ= B by the assumptions of Model 1. Using the second line of
(1.2.15), we can derive the variance-covariance matrix of

vB=EB~prB-py (1.2.16)
= EX’'X)" X'’ X(X’X)"!
=og2(X'X)"L
From (1.2.3) and (1.2.4), we have @i = Mu, where M =1 — X(X’'X)"!X".
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Using the properties of the projection matrix given in Theorem 14 of Appen-
dix 1, we obtain

E¢?=T"'Eu’Mu (1.2.17)
=T71Etr Muu’ by Theorem 6 of Appendix 1
=T"lg2tr M
= T-(T—K)o? by Theorems 7 and 14 of Appendix 1,

which shows that g2 is a biased estimator of g2, We define the unbiased
estimator of o2 by

52 = (T — K)'d'6. (1.2.18)

We shall obtain the variance of 2 later, in Section 1.3, under the additional
assumption that u 1s normal,

The quantity Vﬁ can be estimated by substituting either 62 or 62 (defined
above) for the o2 that appears in the right-hand side of (1.2.16).

1.2.4 Definition of Best

Before we prove that the least squares estimator is best linear unbiased, we
must define the term best. First we shall define it for scalar estimators, then for
vector estimators.

DEFINITION l.g.l . Let § and 6* be scalar estimators of a scalar parameter 6.
The estimator 6 is said to be at least as good as (or at least as efficient as) the
estimator ¢ if E(@ — 6 = E(6* — 0 forall parameter values. The estimator
6 is said to be berter (or more efficient) than the estimator 6* if 6 is at least as
good as 6* and E(B 9y < E(8* — 0)? for at least one parameter value. An
estimator is said to be best (or efficient) in a class if it is better than any other
estimator in the class.

The mean squared error is a reasonable criterion in many situations and is
mathematically convenient. So, following the convention of the statistical
literature, we have defined “better” to mean “having a smaller mean squared
error.” However, there may be situations in which a researcher wishes to use
other criteria, such as the mean absolute error.

DEFINITION 1.2.2.  Let 8 and 6* be estimators of a vector parameter 6. Let A
and B be thelr respective mean squared error matrlces, that is,
A= E(B 0)(0 @)’ and B = E(@* — 6)(6* — 0)’. Then we say01s better (or
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more efficient) than @* if

¢/(B—A)ez0 foreveryvector ¢ and every parameter value
(1.2.19)

and

¢’B— A) >0 foratleast one value of ¢ and (1.2.20)
at least one value of the parameter.

This definition of better clearly coincides with Definition 1.2.1 if @ is a scalar.
In view of Definition 1.2.1, equivalent forms of statements (1.2.19) and
(1.2.20) are statements (1.2.21) and (1.2.22):

'@ isatleast as goodas c¢’6* foreveryvector ¢ (1.2.21)
and

c’f isbetterthan c’6* for at least one value of . (1.2.22)
Using Theorem 4 of Appendix 1, they also can be written as

B = A for every parameter value (1.2.23)
and

B # A for at least one parameter value. (1.2.24)

(Note that B = A means B — A is nonnegative definite and B > A means
B — A is positive definite.)

We shall now prove the equivalence of (1.2.20) and (1.2.24). Because the
phrase “for at least one parameter value” is common to both statements, we
shall ignore it in the following proof. First, suppose (1.2.24) is not true. Then
B = A. Therefore ¢’(B — A)c = 0 for every ¢, a condition that implies that
(1.2.20)is not true. Second, suppose (1.2.20) is not true. Thenc’(B — A)e =0
for every ¢ and every diagonal element of B — A must be O (choose ¢ to be the
zero vector, except for 1 in the ith position). Also, the i, jth element of B — A is
0 (choose ¢ to be the zero vector, except for 1 in the ith and jth positions, and
note that B — A is symmetric). Thus (1.2.24) is not true. This completes the
proof.

Note that replacing B # A in (1.2.24) with B > A —or making the corre-
sponding changein (1.2.20) or (1.2.22) — is unwise because we could not then
rank the estimator with the mean squared error matrix

[ 1]
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higher than the estimator with the mean squared error matrix

5 3]

A problem with Definition 1.2.2 (more precisely, a problem inherent in the
comparison of vector estimates rather than in this definition) is that often it
does not allow us to say one estimator is either better or worse than the other.
For example, consider

_Jjr 0 - 2 0
A—[O 1] and B [0 *]. (1.2.25)

Clearly, neither A = B nor B = A. In such a case one might compare the
trace and conclude that 8 is better than 6* because tr A < tr B. Another
example is

121 _12 0
A—[l 2] and B—[O 2]. (1.2.26)

Again, neither A = B nor B = A. If one were using the determinant as the
criterion, one would prefer 6 over 6* because det A < det B.

Note that B = A implies both tr B = tr A and det B = det A. The first
follows from Theorem 7 and the second from Theorem 11 of Appendix 1. As
these two examples show, neither tr B = tr A nor det B = det A implies
B=A.

Use of the trace as a criterion has an obvious intuitive appeal, inasmuch as it
is the sum of the individual variances. Justification for the use of the determi-
nant involves more complicated reasoning. Suppose 6 ~ N(@, V), where V is
the variance-covariance matrix of é. Then, by Theorem 1 of Appendix 2,
(0 éyYv- ‘(8 0) ~ x%, the chi-square distribution with K degrees of free-
dom, K'being the number of elements of 8. Therefore the (1 — )% confidence
ellipsoid for @ is defined by

(618 — 6)'V-1(6 - 6) < x2(a)), (1.2.27)

where y% (o) is the number such that P[x% = y%(c)] = . Then the volume of
the ellipsoid (1.2.27) is proportional to the determinant of V, as shown by
Anderson (1958, p. 170).

A more intuitive justification for the determinant criterion is possible for
the case in which @ is a two-dlmenswnal vector. Let the mean squared error
matrix of an estimator § = (0,, 02) be



