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Preface

Since its first introduction over 60 years ago, the concept of category has been
increasingly employed in all branches of mathematics, especially in studies where the
relationship between different branches is of importance. The categorical ideas arose
originally from the study of a relationship between geometry and algebra; the
fundamental simplicity of these ideas soon made possible their broader application.

The categorical concepts are latent in elementary mathematics; making them more
explicit helps us to go beyond elementary algebra into more advanced mathematical
sciences. Before the appearance of the first edition of this book, their simplicity was
accessible only through graduate-level textbooks, because the available examples
involved topics such as modules and topological spaces.

Our solution to that dilemma was to develop from the basics the concepts of directed
graph and of discrete dynamical system, which are mathematical structures of wide
importance that are nevertheless accessible to any interested high-school student. As the
book progresses, the relationships between those structures exemplify the elementary
ideas of category. Rather remarkably, even some detailed features of graphs and of
discrete dynamical systems turn out to be shared by other categories that are more
continuous, e.g. those whose maps are described by partial differential equations.

Many readers of the first edition have expressed their wish for more detailed
indication of the links between the elementary categorical material and more advanced
applications. This second edition addresses that request by providing two new articles
and four appendices. A new article introduces the notion of connected component,
which is fundamental to the qualitative leaps studied in elementary graph theory and in
advanced topology; the introduction of this notion forces the recognition of the role of
functors.

The appendices use examples from the text to sketch the role of adjoint functors in
guiding mathematical constructions. Although these condensed appendices cannot
substitute for a more detailed study of advanced topics, they will enable the student,
armed with what has been learned from the text, to approach such study with greater
understanding.

Buffalo, January 8, 2009 F. William Lawvere
Stephen H. Schanuel



Organisation of the book

The reader needs to be aware that this book has two very different kinds of ‘chapters’:

The Articles form the backbone of the book; they roughly correspond to the written
material given to our students the first time we taught the course.

The Sessions, reflecting the informal classroom discussions, provide additional
examples and exercises. Students who had difficulties with some of the exercises in
the Articles could often solve them after the ensuing Sessions. We have tried in the
Sessions to preserve the atmosphere (and even the names of the students) of that first
class. The more experienced reader could gain an overview by reading only the Articles,
but would miss out on many illuminating examples and perspectives.

Session 1 is introductory. Exceptionally, Session 10 is intended to give the reader a
taste of more sophisticated applications; mastery of it is not essential for the rest of the
book.

Each Article is further discussed and elaborated in the specific subsequent Sessions
indicated below:

Article I Sessions 2 and 3
Article I1 Sessions 4 through 9
Article 111 Sessions 11 through 17
Article IV Sessions 19 through 29
Article V Sessions 30 and 31
Article VI Sessions 32 and 33
Article VII Sessions 34 and 35

The Appendices, written in a less leisurely manner, are intended to provide a rapid
summary of some of the main possible links of the basic material of the course with
various more advanced developments of modern mathematics.
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SESSION 1

Galileo and multiplication of objects

1. Introduction

Our goal in this book is to explore the consequences of a new and fundamental
insight about the nature of mathematics which has led to better methods for under-
standing and using mathematical concepts. While the insight and methods are sim-
ple, they are not as familiar as they should be; they will require some effort to master,
but you will be rewarded with a clarity of understanding that will be heipful in
unravelling the mathematical aspect of any subject matter.

The basic notion which underlies all the others is that of a category, a
‘mathematical universe’. There are many categories, each appropriate to a particular
subject matter, and there are ways to pass from one category to another. We will
begin with an informal introduction to the notion and with some examples. The
ingredients will be objects, maps, and composition of maps, as we will see.

While this idea, that mathematics involves different categories and their relation-
ships, has been implicit for centuries, it was not until 1945 that Eilenberg and Mac
Lane gave explicit definitions of the basic notions in their ground-breaking paper ‘A
general theory of natural equivalences’, synthesizing many decades of analysis of the
workings of mathematics and the relationships of its parts.

2. Galileo and the flight of a bird

Let’s begin with Galileo, four centuries ago, puzzling over the problem of motion.
He wished to understand the precise motion of a thrown rock, or of a water jet from
a fountain. Everyone has observed the graceful parabolic arcs these follow; but the
motion of a rock means more than its track. The motion involves, for each instant,
the position of the rock at that instant; to record it requires a motion picture rather
than a time exposure. We say the motion is a ‘map’ (or ‘function’) from time to
space.



4 Session 1

The flight of a bird as a map from time to space

TIME SPACE
starting just ending
time later time
Schematically:
flight of bird
TIME > SPACE

You have no doubt heard the legend; Galileo dropped a heavy weight and a light
weight from the leaning tower of Pisa, surprising the onlookers when the weights hit
the ground simultaneously. The study of vertical motion, of objects thrown straight
up, thrown straight down, or simply dropped, seems too special to shed much light
on general motion; the track of a dropped rock is straight, as any child knows.
However, the motion of a dropped rock is not quite so simple; it accelerates as it
falls, so that the last few feet of its fall takes less time than the first few. Why had
Galileo decided to concentrate his attention on this special question of vertical
motion? The answer lies in a simple equation:

SPACE = PLANE x LINE

but it requires some explanation!
Two new maps enter the picture. Imagine the sun directly overhead, and for each
point in space you’ll get a shadow point on the horizontal plane:

SPACE
shadow
Y
PLANE i
shadow of p

This is one of our two maps: the ‘shadow’ map from space to the plane. The second
map we need is best imagined by thinking of a vertical line, perhaps a pole stuck into
the ground. For each point in space there is a corresponding point on the line, the
one at the same level as our point in space. Let’s call this map ‘level”:



