Engineering Mechanics

Dynighylics

Robert W. Soutas-Little Daniel J. Inman

Engineering Mechanics DYNAMICS

Robert W. Soutas-Little

Michigan State University

Daniel J. Inman

Virginia Polytechnic Institute and State University

Prentice Hall Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Soutas-Little, Robert W. Engineering mechanics. Dynamics / Robert W. Soutas-Little & Daniel J. Inman p. cm. Includes bibliographical references and index. ISBN 0-13-278409-2 1. Dynamics. I. Inman, D. J. II. Title. TA352.S615 1998 620.1'04-dc21 98-26491 CIP

Acquisitions editor: William Stenguist

Editorial/production supervision: Rose Kernan

Editor-in-chief: Marcia Horton

Managing editors: Bayani Mendoza de Leon and Eileen Clark

Copy editing: Abigail Baker Art director: Jayne Conte Cover designer: Bruce Kenselaar

Cover Photo: Space Shuttle Columbia on Lift Off,

Index Stock Photography, Inc.

Director of production and manufacturing: David W. Riccardi

Manufacturing buyers: Julia Meehan and Pat Brown

Editorial assistant: Meg Weist Composition: WestWords, Inc.

© 1999 by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Registered trademarks used in this text include: MATLAB®, Mathcad®, Maple®, and Mathematica®

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and test of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-278409-2

Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Prentice-Hall, Upper Saddle River, New Jersey

Photo Credits:

Chapter 1: Al Tielemans, Duomo Photography Chapter 2: Jamie Squire, Allsport Photography, Inc. Chapter 3: Natahn Bilow, Allsport Photography, Inc. Chapter 4: Tom Wanstall/Code Red, George Hall Photography

Chapter 5: Warren Morgan, Westlight

Chapter 6: Lester Lefkowitz, The Stock Market

Chapter 7: Denis Boulanger/Agence Vandystadt, Allsport Photography, Inc.

Chapter 8: Index Stock Photography, Inc.

Chapter 9: Bob Winsett, Index Stock Photography, Inc.

Cover: NASA, Index Stock Photography, Inc.

Preface

Mechanics Reform

In writing this text, we first and foremost believe that the fundamental principles of engineering mechanics have not changed. We have not tried to revolutionize statics or dynamics. However, the practice of engineering has evolved largely because of the power that computers and software have brought to engineering. In particular, computational software, such as MATLAB®, Mathcad®, Maple®, and Mathematica®, is now a significant tool in the curriculum of most engineering schools, and has changed the way an engineer handles calculations as the slide rule and calculator once did. We wrote this text with the idea that a new undergraduate text in mechanics should reflect this changing aspect of engineering education. We hope to reform the presentation of mechanics, and bring the material up to date with modern engineering practice.

Our presentation focuses on understanding mechanics conceptually as opposed to rote memorization of formulae or duplication of a particular sample problem, and we use computational software as a tool to gain this insight. We believe traditional texts rely too heavily on homework problems that specify geometry and loading and miss the important transition to design concepts. By using computational software, students are free to explore the parameters of a problem or an example, explorations which truly form the basis of engineering design. In our own courses, we have found that students gain a greater insight into mechanics by solving a problem for every angle or dimension, and then graphing the solution to see the effects of parametric changes. First, we focus our students on modeling, using free-body diagrams, and then writing the equations of motion and the constraint equations. Then, students use computational software to help solve numerical problems, and most importantly, investigate design parameters. By using software, we have found that students learn more about both fundamental mechanics and design.

MATLAB, MathCAD, Maple, And Mathematica Supplements In the original draft of this text, we integrated applications from particular computational software programs into the text itself, that is, where

appropriate, the sample problem in the book included instruction in the use of a certain computational package. But we decided that this made the text too restrictive, and instead created an approach where integrated, software-specific supplements work hand in hand with the text. Students study the basic mechanics in the text, and refer to a software specific supplement that shows how using either MATLAB, Mathcad, Maple, or Mathematica can enrich and expand their understanding of the concept. These softbound supplements are packaged with the text for free. Professors choose the appropriate text/supplement bundle depending on what software package is emphasized in their department. The choices include the following.

Supplements to Accompany Engineering Machanics: Statics:

- MATLAB Supplement for Statics (ISBN 0-13-794116-1)
- Mathcad Supplement for Statics (ISBN 0-13-794124-2)
- Mathematica Supplement for Statics (ISBN 0-13-794132-3)
- Maple Supplement for Statics (ISBN 0-13-011427-8)

Supplements to Accompany Engineering Machanics: Dynamics:

- MATLAB Supplement for Dynamics (ISBN 0-13-794157-9)
- Mathcad Supplement for Dynamics (ISBN 0-13-794165-X)
- Mathematica Supplement for Dynamics (ISBN 0-13-794173-0
- Maple Supplement for Dynamics (ISBN 0-13-011428-6)

Teaching Dynamics With This Text The study of dynamics of particles and rigid bodies involve three major parts:

- the modeling of the body through the use of a free-body diagram,
- the formulation of the equations of motion and the constraint equations,
- and the solution of the differential equations to determine the motion of the body.

Traditional texts do an excellent job on the first two aspects, but solve only the simplest differential equations. In the past, the inability to solve nonlinear differential equations restricted many solutions to a quasi-static approach, where the acceleration was determined at the "instant of release" or "at a particular position or time." This has always restricted the student from fully understanding the motion of the object, the true beauty of dynamics. All computational software packages contain methods for the solution of an initial value differential equation, linear or nonlinear. Since the solution of the differential equations of motion is essential to the full use of dynamics, we have devoted considerable time to the differential equations in Chapter 1. We have stressed analytical solutions of the differential equations where such solutions can be obtained. Although a Runge-Kutta numerical solution is much more accurate than the simple Euler or

tangent line method, most solutions in the computational supplements and in the solutions manual are solved using the Euler method. We have found that it is easy for the students to understand and can be presented with minimum loss of class time. Since all computational software has a Runge-Kutta function, this method can be introduced to the student at any time and we have included its use in the computational supplements.

Problem Sets We have included a wealth of problems in this text that test a student's understanding of the basic principles of engineering. We have also included many motivating engineering applications in these problems that give students an understanding of "real-world" mechanics. Many of the problems are given with general geometries and loadings and we encourage the students to obtain the differential equations of motion and the constraint equations in terms of these parameters. If there is an analytical solution to the differential equation, we ask that the students determine the general solution of the problem. When computational software is necessary to solve the problem, we give the student numerical values of the parameters or ask the student to choose parameters such that a particular motion will result. In this manner, we are able to introduce design concepts in the course. We encourage students to use both traditional and computational approaches highlighted in the companion manuals to solve these problems. We have marked some problems with a single computer icon () where using software is particularly useful. Other problems that require the use of computational software are noted with a double computer icon ().

A Tested Approach Adopting a new mechanics text can seem like a risky proposition. However, we have used this approach to teach Mechanics courses at our schools over the last four years, and in doing so, have thoroughly refined this book so it is ready for publication. In addition, this manuscript also went through an initial preliminary edition to guarantee accuracy. Working with the publisher, we set actual text pages and produced a softbound version of this book that we used for a year at our schools and at several other institutions. Only after thoroughly reviewing and analyzing our results, did we produce this final product.

Dictionary There is a dictionary of terms at the end of the text with an index where terms occur in the text. We feel this will make the text a more valuable reference for students in other courses.

Supplements Instructors solutions manuals for the text are available through Prentice Hall for both *Statics* and *Dynamics*. They contain worked out solutions to all the problems as well as Software solutions in Mathcad

and MATLAB to those homework problems marked with computer icons. They are:

- Engineering Mechanics: Statics Solutions Manual CD (0-13-794108-0)
- Engineering Mechanics: Dynamics Solutions Manual CD (0-13-794140-4)

The CD can be used to copy and print transparencies of the solutions for classroom presentations. We are also developing a web page located at www.prenhall.com/soutas to further support this text, and answer your questions and comments. We, of course, will post any errata that we find in the first printing at this site.

Acknowledgments The authors would like to thank the individuals that helped bring this project to completion: Bill Stenquist, the acquisitions editor, who had the vision to see that change in undergraduate mechanics education was necessary; Rose Kernan, the production editor, who spent many hours to bring the books to the students and was willing to work with two authors who often tried her patience; Dan Balint, a very talented student who wrote the Maple and Mathematica supplements and who spent many hours working homework problems, assisting in grading, and answering student questions; Wendy Raffner, a graduate student, who taught a beta test section of the of the statics course in its very early stages, but most of all the students of Michigan State University, Notre Dame, and Grand Valley College who worked with the preliminary edition and gave such valuable feedback to the authors. The authors also wish to thank their wives who supported our efforts over the past 6 years to bring this text into existence and the many reviewers who offered valuable suggestions:

- Doctor Mary C. Verstraete
 Department of Biomedical Engineering
 The University of Akron
- Doctor Edward Grood
- Professor Hayden Smith Muskegon Community College
- Doctor Daniel C. Kammer
 Department of Nuclear Engineering and Engineering Physics
 University of Wisconsin
- Doctor Joseph C. Slater
 Department of Mechanical and Materials Engineering
 Wright State University
- Professor Billie Spencer
 Department of Civil Engineering & Geological Sciences
 University of Notre Dame
- Professor Peter Dashner
 Department of Mechanical Engineering
 California State Polytechnic University—Pomona

- Professor J. Ron Bailey
 Department of Mechanical Engineering
 University of Texas at Arlington
- Doctor Dean H. D. Nelson College of Engineering Texas Christian University
- Professor Hugh Huntley
 Department of Mechanical Engineering
 University of Michigan—Dearborn
- Professor Candace Ammerman Engineering Division Colorado School of Mines
- Professor Hartley Grandin
 Department of Mechanical Engineering
 Worcester Polytechnic Institute
- Professor Nicholas J. Salamon
 Department of Engineering Science and Mechanic
 Penn State University
- Professor Douglas Oliver Department of Mechanical Engineering University of Teledo
- Professor Scott Abrahamson
 Department of Mechanical Engineering
 Stanford University

We welcome comments, corrections, and suggestions. We believe mechanics education is evolving, and hope our text will too.

> Robert Wm. Soutas-Little Michigan State University soutas@egr.msu.edu

Daniel J. Inman Virginia Polytechnic Institute and State University dinman@vt.edu

Contents

Preface		xiii
	Historical Introduction	
	Organization of the Study of Dynamics	
	Newton's Laws	
Chapter	1 Kinematics of a Particle	1
1.1	Introduction	1
1.2	Rectilinear Motion of a Particle: Single Degree of Freedom	3
1.3	Classification of the Kinematic or Dynamic Problem	6
1.4	Inverse Dynamics Problem	7
	Sample Problems 1.1–1.2	8
	Homework Problems 1.1–1.24	11
1.5	The Direct Dynamics Problem: Rectilinear Motion	
	When the Acceleration is Given	14
	Classification of Differential Equations	15
	Separable First Order Scalar Differential Equations	16
	Sample Problems 1.3–1.6	20
	Special Rectilinear Motions	27
	Sample Problem 1.7	29
	Homework Problems 1.25–1.56	31
	Solution of a Linear First Order Differential Equation	
	by Use of An Integrating Factor	34
	Sample Problem 1.8	34
	Second Order Linear Differential Equations	35
	Sample Problem 1.9	37
	Numerical Solution of Differential Equations	38
	Sample Problem 1.10	40
	Homework Problems 1.57–1.66	42

iv CONTENTS

1.6	Curvilinear Motion of a Particle	43
	Vector Differential Equation	45
	Projectile Motion	47
	Sample Problem 1.11–1.14	50
	Homework Problems 1.67–1.87	54
1.7	Normal and Tangential Coordinates	57
	Circular Motion	60
	Sample Problem 1.15–1.17	62
	Normal and Tangential Coordinates in Three Dimensions	65
	Sample Problem 1.18	67
	Homework Problems 1.88–1.103	69
1.8	Radial and Transverse Coordinates (Polar Coordinates)	71
	Sample Problem 1.19–1.22	73
	Homework Problems 1.103–1.118	80
1.9	Three-dimensional Coordinate Systems	82
	Cylindrical Coordinates	82
	Sample Problem 1.23	83
	Spherical Coordinates	84
	Sample Problem 1.24	86
	Homework Problems 1.119–1.128	88
1.10	Relative Rectilinear Motion of Several Particles	90
	Sample Problem 1.25–1.26	91
	Homework Problems 1.129–141	93
1.11	General Relative Motion between Particles	95
	Sample Problem 1.27–1.29	95
	Navigation using Relative Velocity	100
	Sample Problem 1.30	104
	Homework Problems 1.142–1.159	106
1.12	Dependent Motions Between Two or More Particles	109
	Sample Problem 1.31–1.33	111
	Homework Problems 1.160–1.170	114
1.13	Kinematic Parametric Equations	117
	Trajectories Expressed as Function of Parameters	118
	Sample Problem 1.34–1.35	121
	Parametric Equations for three-dimensional trajectories	123

	Sample Problem 1.36	125
	Homework Problems 1.171–1.178	126
Chapte	r 2 Kinetics of Particles	128
2.1	Introduction	128
	Equations of Motion for a Particle	130
2.2	Solution Strategy for Particle Dynamics	131
	Review of the Concepts of Static and Kinetic Friction	133
	Sample Problem 2.1–2.6	135
	Determination of the Direction of the Normal and Friction Forces	149
	Sample Problem 2.7–2.8	151
	Homework Problems 2.1–2.34	155
2.3	Discontinuity and Singularity Functions	160
	Sample Problem 2.9–2.10	163
	Homework Problems 2.35–2.44	167
2.4	Normal and Tangential Coordinates	169
	Sample Problem 2.11–2.13	169
	Homework Problems 2.45–2.66	173
2.5	Two-dimensional Parametric Equations of Dynamics	176
	Sample Problems 2.14–2.15	177
	Homework Problems 2.67–2.72	181
2.6	Polar coordinates	182
	Sample Problems 2.16–2.17	182
	Homework Problems 2.73–2.86	185
	Angular Momentum of a Particle	188
	Central Force Motion	189
	Sample Problems 2.18–2.19	197
	Homework Problems 2.87–2.96	200
2.7	Three-dimensional Particle Dynamics in	
	Curvilinear Coordinates	202
	Cylindrical Coordinates	202
	Sample Problems 2.20–2.21	203
	Spherical Coordinates	206
	Sample Problem 2.22	206

vi CONTENTS

		Parametric Equations in Tangential, Normal and Binormal Coordinates	209
		Sample Problem 2.23	210
		Homework Problems 2.97–2.116	212
Cha	ptei	3 Work-Energy and Impulse-Momentum	
		First Integrals of Motion	216
	3.1	Introduction	216
		Power, Work and Energy	217
		Work of a Spring Force	219
		Work of the Gravitational Attraction Force between Two Masses	219
		Power and Efficiency	220
		Sample Problems 3.1–3.6	221
		Homework Problems 3.1–3.45	228
	3.3	Conservative Forces and Potential Energy	236
	3.4	Conservation of Energy	242
		Sample Problems 3.7–3.8	243
		Homework Problems 3.46–3.70	245
	3.5	Principle of Impulse and Momentum	249
		Impulse and Momentum of Several Particles	250
		Sample Problems 3.9–3.10	251
		Homework Problems 3.71–3.93	253
	3.6	Impact	256
		Direct Central Impact	257
		Sample Problem 3.11	259
		Oblique Central Impact	261
		Impact with a Stationary Object	262
		Sample Problems 3.12–3.13	262
		Homework Problems 3.94–3.116	265
Chaj	pter	4 System of Particles	269
	4.1	Introduction	269
	4.2	General Equations for a System of Particles	270
2	4.3	Center of Mass of a System of Particles	272
		Sample Problems 4.1–4.3	275
		Homework Problems 4.1–4.21	280
	4.4	Kinetic Energy of a System of Particles	285
			200

	4.5	Work-Energy and Conservation of	
		Energy of a System of Particles	285
	4.6	Impulse and Momentum of a System of Particles	286
		Sample Problem 4.4	287
		Homework Problems 4.22–4.42	289
	4.7	Mass Flows	292
		Steady Mass Flow	292
		Sample Problem 4.5	293
		Variable Mass Flow	294
		Sample Problem 4.6	295
		Homework Problems 4.43–4.57	296
Cha	pte	r 5 Kinematics of Rigid Bodies	300
	5.1	Introduction	300
	5.2	Translation of a Rigid Body	305
	5.3	Rotation About a Fixed Axis	306
		Sample Problem 5.1	309
	5.4	Planar Pure Rotation about and Axis	
		Perpendicular to the Plane of Motion	310
		Vector Relations for Rotation in a Plane	316
		Constraints to the Motion	316
		Sample Problem 5.2	317
		Sample Problem 5.3	319
		Sample Problem 5.4	320
		Sample Problem 5.5	321
		Sample Problem 5.6	322
		Sample Problem 5.7	323
		Sample Problem 5.8	324
		Homwork Problems 5.1–5.21	326
	5.5	General Plane Motion	329
		Absolute and Relative Velocities in Plane Motion of a Rigid Body	331
		Experimental Motion Data	334
		Angular Velocity for Noisy Experimental Data	335
		Sample Problem 5.9	336
		Sample Problem 5.10	336
		Sample Problem 5.11	337

viii CONTENTS

	Sample Problem 5.12	339
	Direct Vector Method to Obtain the Angular Velocity	34
	Problems 5.22–5.42	343
5.6	Instantaneous Center of Rotation in Plane Motion	346
	Sample Problem 5.13	348
	Sample Problem 5.14	350
	Sample Problem 5.15	351
5.7	Instantaneous Center of Rotation between Two Rigid Bodies	352
	Homework Problems 5.43–5.59	355
5.8	Absolute and Relative Acceleration of a	
	Rigid Body in Plane Motion	357
	Alternate Solution of the Acceleration of Rigid Bodies	359
	Sample Problem 5.16	361
	Sample Problem 5.17	363
	Sample Problem 5.18	364
	Sample Problem 5.19	365
	Homework Problems 5.60–5.73	366
5.9	Kinematics of a System of Rigid Bodies	368
	Sample Problem 5.20	371
	Homework Problems 5.74–5.82	373
5.10	Analysis of Plane Motion in Terms of a Parameter	374
	Sample Problem 5.21	376
	Sample Problem 5.22	378
	Sample Problem 5.23	379
	Homework Problems 5.83–5.93	381
5.11	General Three-dimensional Motion of a Rigid Body	383
	Linear and Angular Acceleration	386
	Constraints to the General Three-dimensional Motion of a Rigid Body	387
	Rigid Body with a Fixed Point in Space	388
	Other Contraints	389
	Sample Problem 5.24	390
	Sample Problem 5.25	392
	Sample Problem 5.26	394
	Homework Problems 5.94–5.108	397
5.12	Instantaneous Helical Axis, or Screw Axis	400

	Motion of a Rigid Body Having a Fixed Point in Space	403
5.13	Instantaneous Helical Axis of Rotation	
	between Two Rigid Bodies	405
	Sample Problem 5.27	407
	Homework Problems 5.109–5.113	409
5.14	Motion with Respect to a Rotating	411
	Reference Frame or Coordinate System	411
	Sample Problem 5.28	415
	Sample Problem 5.29	417
	Sample Problem 5.30	419
	Homework Problems 5.114–5.124	424
Chapter	6 Dynamics of Rigid Bodies in	
	Plane Motion	429
6.1	Introduction	429
6.2	Linear and Angular Momentum	429
	Angular Momentum About a Fixed Point on a Rigid Body	431
6.3	Equations of Motion for Rigid Bodies in Plane Motion	432
	Sample Problem 6.1	434
	Sample Problem 6.2	439
	Sample Problem 6.3	440
	Sample Problem 6.4	442
6.4	Constraints on the Motion	443
	Sample Problem 6.5	444
	Rolling Without Sliding	448
	Rolling and Sliding	450
	Sample Problem 6.6	451
	Sample Problem 6.7	452
~ **	Sample Problem 6.8	454
6.5	Computational Methods for Plane Dyanamic Systems	454
	Sample Problem 6.9	455
	Homework Problems 6.1–6.27	458
6.6	Systems of Rigid Bodies or Particles	462
	Sample Problem 6.10	463
	Sample Problem 6.11	465
	Sample Problem 6.12	467

X CONTENTS

	Homework Problems 6.28–6.75	470
6.7	D'Alembert's Principle	477
	Homework Problems 6.76–6.97	479
Chapte	er 7 Power, Work, Energy, Impulse, and	
-	Momentum of a Rigid Body	483
7.1	Power, Work, and Energy of a Rigid Body	483
	Work Done by a Couple	489
	Sample Problem 7.1	489
7.2	Systems of Rigid Bodies and Particles	490
	Sample Problem 7.2	490
7.3	Conservation of Energy	491
	Sample Problem 7.3	491
	Homework Problems 7.1–7.45	493
7.4	Impulse and Momentum	500
	Sample Problem 7.4	501
	Sample Problem 7.5	502
	Sample Problem 7.6	503
	Homework Problems 7.46–7.63	505
7.5	Eccentric Impact on a Single Rigid Body	508
	Sample Problem 7.7	510
	Sample Problem 7.8	511
	Homework Problems 7.64–7.82	513
7.6	Ecccentric Impact	515
	Sample Problem 7.9	519
	Homework Problems 7.83–7.91	522
Chapte	r 8 Three-Dimensional Dynamics	
_	of Rigid Bodies	524
8.1	Introduction	524
8.2	Rotational Transformation between Coordinate Systems	525
	Coordinate Transformations	525
	Sample Problem 8.1	529
	Sample Problem 8.2	529
	Homework Problems 8.1–8.10	531

	8.3	Eulerian Angles	533
		Sample Problem 8.3	535
	8.4	Angular motion	537
		Homework Problems 8.11–8.16	538
	8.5	Joint Coordinate System	539
		Homework Problems 8.17–8.20	541
	8.6	Equations of Motion	542
		Sample Problem 8.4	544
		Homework Problems 8.21–8.31	546
	8.7	Euler's Equations of Motion	548
		Stability of Rotation about a Principal Axis	548
		Motion of an Axisymmetric Object	549
		Sample Problem 8.5	551
		Heavy Axisymmetric Top	552
		Gyroscopic Motion with Steady Precession	554
		Motion of an Axisymmetric Body Subjected to No External Forces	555
		The Gyroscope	557
		Homework Problems 8.32–8.45	558
Cha	aptei	r 9 Vibration	561
Cha	aptei 9.1	r 9 Vibration Introduction	561 561
Cha	9.1	Introduction	561
Cha	_		
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration	561 562 564
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1	561 562 564 566
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2	561 562 564 566 567
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1	561 562 564 566
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration	561 562 564 566 567 568
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4	561 562 564 566 567 568 568 570
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5	561 562 564 566 567 568 568 570 570
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6	561 562 564 566 567 568 568 570 570
Cha	9.1 9.2	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6 Homework Problems 9.1–9.28	561 562 564 566 567 568 568 570 570 571
Cha	9.1	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6 Homework Problems 9.1–9.28 Damped Single-Degree-of-Freedom Systems	561 562 564 566 567 568 570 570 571 573 575
Cha	9.1 9.2	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6 Homework Problems 9.1–9.28	561 562 564 566 567 568 568 570 570 571
Cha	9.1 9.2	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6 Homework Problems 9.1–9.28 Damped Single-Degree-of-Freedom Systems Undamped Motion	561 562 564 566 567 568 568 570 570 571 573 575
Cha	9.1 9.2	Introduction Undamped Single-Degree-of-Freedom Systems Linear Vibration Sample Problem 9.1 Sample Problem 9.2 Sample Problem 9.3 Nonlinear Vibration Sample Problem 9.4 Sample Problem 9.5 Sample Problem 9.6 Homework Problems 9.1–9.28 Damped Single-Degree-of-Freedom Systems Undamped Motion Overdamped Motion	561 562 564 566 567 568 570 570 571 573 575 577