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Preface

The Autumn Course of 1984 held at the International Centre for Theoretical
Physics (ICTP) in Miramare (Trieste, Italy) during the period November 12 to
December 14, 1984, was devoted to the theme "Semigroups, Theory and
Applications". In accordance with the basic aims of the ICTP to promote
scientific maturity of developing countries the structure of the course was
the following: The program of the first three weeks consisted of basic
courses in order to provide an introduction to various aspects of the area
for participants with limited background. In the fourth week more advanced
courses were devoted to topics of current research and the fifth week had
the character of a conference on evolution problems. The course received
considerable interest as is documented by the number of approximately

90 participants from developing countries.

This volume contains seven of the basic lectures presented in the first
four weeks of the course. It is our opinion that this combination of lectures
provide a useful introduction to the basic theory of Co—semigroups and to
various applications. A representative part of conference talks presented

during the last week is contained in an other volume of this series.

Of course, it is our obligation to thank the funding agencies of the ICTP
(Italian Government, UNESCO and IAEA) which made this course possible. We
also immensly acknowledge support provided by the staff of the ICTP.
Moreover, Prof. Abdus Salam, director of the ICTP, underlined the importance
of this type of enterprises through his constant visible interest during the
course. Professors L. Bertocchi, A.H. Hamende and H. Talafi contributed in
various stages of the organization. We especially appreciate support by

Prof. G. Vidossich during the preparation of the course.

The success of the course could not have been possible without the joint
efforts of the lecturers, speakers and participants. Finally we want to
express our thanks to Mrs. Bridget Buckley (Pitman) and to Dr. W. Dietl
(IAEA), who by joint efforts made publication of these proceedings in the

Research Notes possible. The excellent typing of the manuscript for this



volume was done by Mrs. G. Krois (Graz), who also provided efficient
secretarial support concerning publication of these proceedings.
July 1986 H. Brezis, Paris

M.G. Crandall, Madison
F. Kappel, Graz

(Organizing Committee)



Lecturers, tutors and conference

speakers

J

B

= O

< I - T o T PR P - S S SN o B B B - B <o - B 02

.M. BALL
BARAS
BARBU
BARDOS

BENACHOUR
BENILAN
BERTSCH
BREZIS
CAZENAVE
.L. CHAN

.D. COHEN
.G. CRANDALL
. DAFERMOS
DEGIOVANNI
.P. DIAS

.I. DIAZ

.C. EVANS
.C. FIFE
GINIBRE
.T. GLASSEY
.A. GOLDSTEIN
.E. GURTIN
HARAUX

BEIRAO DA VEIGA

United Kingdom
France
Romania
France
Italy
Algerie
France
The Netherlands
France
France
Hong Kong
France
USA

USA
Italy
Portugal
Spain
USA

USA
France
UsA

USA

USA

France

H 2 H = 06 4 =2 9 R O A g o 2 2 wnog @ ™ o> o mo4yg oMo o»

KAMIN
KAPPEL

.P. KERNEVEZ
KERSNER
LASOTA

MATANO
NOHEL

OHARU

.A. PELETIER
PIERRE

.L. RUSSELL
.E. SACKS

.E. SEGAL
SINESTRARI
SLEMROD

.E. SOUGANTIDIS
STRAUSS

.L. VASQUEZ
VELO

VON WAHL
.I. VRABIE
.I. WEINSTEIN
. WEISSLER

.H. MARTIN, Jr.

Israel
Austria
France
Hungary
Poland
USA
Japan
USA
Japan
The Netherlands
France
USA
USA
USA
Italy
USA
USA
USA
Spain
Italy
West Germany
Romania
USA
USA



Contents

List of participants

C. BARDOS
Introduction to the equations of mathematical physics: Application
of the theory of semigroups to two model equations — the heat

equation and the transport equation

Ph. BENILAN

An introduction to partial differential equations

A. HARAUX

Linear semi-groups in Banach spaces

F. KAPPEL

Semigroups and delay equations

D.L. RUSSELL
Mathematical models for the elastic beam and their control-theoretic

implications

E. SINESTRARI

Optimal regularity for parabolic equations and its applications

M. SLEMROD

Continuum mechanics and semigroups: An introduction

33

93

136

217

234



CBARDOS

Introduction to the equations of
mathematical physics: application of the
theory of semigroups to two model equations

Introduction

Contrary to the rather over ambitious original title, we will only describe
two equations of mathematical physics in these notes: the heat equation and
the transport equation. These two problems have been chosen, first of all,
for their mathematical interest. The heat equation (often also called the
diffusion equation) is the prototype of parabolic equations and the operator
A is the most natural example of a generator of an analytic semigroup. The
transport equation, in its most elementary form, is the prototype of non-
linear hyperbolic problems and the operator é% is the simplest existing
non-trivial example of a generator of a strongly continuous group. The
transport equation is involved in the construction of approximate solutions
of the wave equation (asymptotic to the higher frequencies, immediately after
the eikonal equation).

In both these cases, our essential objective is to show that the theory of
semigroups does not merely stop with the proof of existence and uniqueness
results but that it also provides the suitable framework in which we can
tackle far deeper problems. It is to illustrate the idea that I have chosen
to establish a trace formula for the heat operator which leads to the study
of the relationship between this operator and geometry.

Similarly the greater part of the chapter on the transport equation is
devoted to the spectral theory of the operator of neutron transport. Here the
goal is to bring out the mathematical tools which could contribute to a
better understanding of the (physical) phenomenon.

These two equations mentioned above come from '"macroscopic' physics and
this fact has also influenced my choice. Indeed from the beginning of this
century the problems proposed by physics to mathematics came above all from
quantum mechanics and then from theoretical physics. Of course these problems
have contributed to the birth of extremely rich mathematical theories like

Banach and Hilbert spaces or the theory of distributions. However since the

Translated from the French version by S. Kesavan.



1950's we have witnessed a massive return to classical physics in the
mathematical world. This phenomenon can be explained by giving two reasons:
1. The new problems confronted by engineers require a much more precise

study of the phenomena of classical physics, as for instance, the problems

arising in fluid mechanics. The interest shown now in turbulence and the

Boltzmann equations, is an example of this.

2. The use of computers now permits us to qualitatively exploit several
equations which, in the absence of explicit solutions, would otherwise
lose much of their interest.

In concluding this introduction, I would like to thank the organizers of
the Autumn College H. Brezis, M. Crandall and F. Kappel for having given me
the opportunity to participate in it. I also wish to thank the I.C.T.P. and,
in particular, the Director, Prof. A. Salam, for the warm hospitality and
for the marvelous scientific possibilities it has put at the disposal of

the participants.

The Heat Equation

The equation of heat propagation is written in the form

%% - kAu = 0, u(x,0) = ¢(x) 1)

where k 1is the coefficient of thermal conductivity. This equation is
derived, for instance, in the book of Schwartz [23, p. 227-228]. The
hypothesis leading to (1) is that the rate of change of temperature depends
only on the variation of the tempcerature gradient in space. Thus one has a
diffusion phenomenon.

In the whole space :mq (d = 1,2,3 for example) one can explicitly solve

(1), using the Fourier transform, as a function of the initial data ¢(x).

Assuming k = 1, we write
du 2~
55 Eo + efu,n =0
_ @
a(£,0) = ¢(8) = ;d/z g e T t0ax.
(2m) R

The problem (1) is thus reduced to the solution of an ordinary differential

equation (£ now being a parameter in the equation (2)). We thus obtain



ﬁ(g,t) by the following formula:

2/\

a(é,t) = e

To obtain the function wu(x,t), it is now enough to apply the inverse Fourier

transform which gives

— -t|& 2
u(x,t) = (Fe ' F$p)(x). (4)
Since we know that
F(exg) = (292 Frerg, (5)

we deduce form (4) the formula

2 2
] f(e'ti€| 1 _t\‘zi

73 ) * FF¢ = Rper e LA

u(x,t) =
2md (2m)

)) * 6. (6)
Using the properties of the Fourier transform, we have
2 2
B2y 2B 12y | (any a2 Il

for every X > 0.

Fee) = A Y2 @) (x/n)

which finally gives us, on choosing A = /EE,

u(x,t) = (47t)

2
-d/2 jd o |x-y| /4t s(y)dy. )

R

The formula (7) helps us to deduce the following properties.

(i) For each t > 0 and every ¢ € L2(ﬁmd) the function
u(x,t) = (T(t)9) (x) (8)

is infinitely differentiable, even analytic with respect to the variables x
and t.
(ii) For every initial data ¢ > 0, even if it is of compact support, the

solution wu(x,t) is positive for t > 0. This means that the initial signal



propagates with infinite speed.

o d
(iii) For each initial data ¢ € L (IR ) we have for all x,t

inf ¢(x) < u(x,t) < sup g(x).
xe R4 xe R
The properties (i) and (ii) are characteristic of a class of evolution
equations which are given the name ''parabolic". The property (iii) is
connected to the fact that the Laplacian is an elliptic second order
differential operator. It is called the "maximum principle'.
If we now consider the evolution of temperature not in the whole space
R@ but in a bounded open subset { with boundary 99, we have to prescribe
boundary conditions on 3Q. The most frequent and most natural boundary
conditions are the following:
iy wml.. =0, i) B =o. (9
af v '9Q
The former is the Dirichlet condition (or problem). The latter is called the
Neumann condition (or problem); (i) describes the situation in which by means
of external (to §) actions, one keeps the temperature on the boundary fixed,
for example u = 0; (ii) corresponds to a situation in which the boundary 9§
is perfectly nonconducting and the heat flux across 93Q 1is zero. To simplify
the exposé we will restrict our attention to the Dirichlet problem.
To tackle the problem
du s |
B T Au =0 in @, u| =0, u(+,0) = ¢(+) (10)
one can use at least two methods:
(1) Functional Analysis
(ii) Introduction of a parametrix.
In fact it is often convenient, even necessary, to play with both techniques.
For example, one can introduce the space H = LZ(Q) and in it define the
(unbounded) operator A such that the problem (10) can be written in the

form

— + Au =0, u(0) = ¢ . (11)

. s : 2 s .
Since A 1is not a bounded operator in L () and since we must take into



account boundary conditions, we get

D(A) = {u e L2(@ |ou € L2, uly, = 0}; Au = -hu. (12)

As 930 is a set of measure zero in :RQ, the meaning of the relation
u\BQ = 0 1is not obvious. Nevertheless gne can remove this difficulty using
the supplementary property that Au € L"(Q) (cf. Lions [14, p. 168] or
Lions and Magenes [15]). In fact we have D(A) = {u € Hé(Q)|Au € LZ(Q)}
which reduces the condition u|aQ = 0 to the most usual Trace theorem in

Sobolev spaces. Finally one can show (for sufficiently regular Q),
1 2
D(A) = HO(Q) n H (Q). (13)

The operator A so defined is maximal monotone in the Hilbert space
H = LZ(Q). It then follows that the solution of problem (11) is given by the

formula
u(t,x) = (T(t)¢) (x). (14)

In (14) {T(t)} denotes a family of continuous linear operators in LZ(Q)

with the following properties

(ii) T(t) oT(s) = T(t+s), for all
Clek é%-(T(t)¢) AT(t)$, for all ¢ € D(A).

(i) ||T(t)|\j>1, for all t > 0 (contraction
t,s >0 }

semigroup)

Generalising the notion of the exponential of a bounded linear operator, the
tA
semigroup T(t) 1is denoted e (D, for Dirichlet).

We can show that this semigroup behaves essentially like the operator
T(t) described by the formula (8). More precisely we have:
. 2 .
(i) For every t > 0 and each ¢ ¢ L°(Q), the function

tAD
u(x,t) = (e 79¢)(x)

is infinitely differentiable for x € Q, t > 0 (and is even analytic).

(ii) For every initial data ¢ > 0, even if it is of compact support in @

3

the function

thy
u(x,t) = (e "¢)(x)



