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PREFACE

Realistic models of the physical world are nonlinear,
involving large amplitudes of motion and thus usually several equilibria
of the system concerned. Hence in the majority of applications non-
linearities may not be truncated without seriously effecting the adequacy
of the model. In spite of this, nonlinear dynamics has remained without
much interface with applications for a long time. The reason for this
seems to be at least two-fold. First, there was lack of practical methods
implementing the nonlinear results in everyday applied dynamics. Second,
the massive investment of time and resources in the linearized techniques
generated a potent disincentive for the change, even at the expense of
accurate modelling. The first éspect lost its ground with the arrival of
fast computers, but the second still persists. Indeed, changes in the
attitudes of people are always slower than changes in technology. There
is, however, good news. Not only is nonlinear dynamics stimulated by
computers, but the converse occurs as well. The nonlinear techniques
speed up computation by identifying the types of dynamic trajectories
concerned and, perhaps even more importantly, by helping to check the
results. Furthermore, the Liapunov formalism, fundamental for nonlinear
dynamics, becomes an essential part of the theory of parallel computing
and neural networks. The latter are presently successfully replacing
artificial intelligence and expert systems in most progressive applications,
and thus generating considerable demand for Liapunov type algorithms and
for nonlinear dynamics in general.

The book gives the Liapunov background for the analysis and

synthesis (design) of dynamic behaviour of general networks which represent
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a large class of nonlinear systems, predominantly physical, and in
particular mechanical. It is meant to be a self-learning and thought
provoking reference text. It has grown from junior graduate level
lectures in Engineering Science and Applied Mathematics over a number
of years at several universities (Notre Dame, Ottawa, Queensland,
Alberta, Southern California) and circulated for a while in the format
of lecture notes. The first, introductory chapter refers to the basic
concepts of static characteristics and dynamic processes. The second
and third describe various formats of dynamic models and give a reference
frame for their behaviour. The fourth chapter introduces basic energy
relations, fundamental to the dynamic use of the Liapunov method. The
method itself is described in chapter five, with implementations in
chapters six and seven. The methods of Liapunov Design (synthesis) and
Control in chapter eight close the text.

The prerequisite background is not above elementary analytic
dynamics (mechanics) and differential equations. Readers not interested
in the systems interpretation of dynamics may leave out the first chapter
without consequence to later reading. On the other hand chapters four
and five are fundamental to the whole text. The material is slightly
longer than for a semester course, giving the instructor the option of
cutting off some sections which are less useful to his particular group
of students.

The author is indebted to his wife Elzbieta and children, Joanna

and Michal for their patience and help while writing this text.

Los Angeles, January 1990

J.M. Skowronski
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CHAPTER 1

Structures in System Dynamics

The purpose of this chapter is to describe what one may call the
philosophy of ''change in time" and thus to introduce some fundamental
structures, due to the role of System Dynamics as a rather universal tool
in Science. In fact, the task requires as much rigour as abstractness,
but we must not include too many formal technicalities for the sake of
applied science readers, or too many physical details for the sake of
mathematicians. This dictates a rather discursive approach. Readers
familiar with the subject may pass on to further chapters.

Let us begin with a simple example offering nomenclature which is

suggestive of the strict definitions that will come later.

§1.1 An Oscillator.

Consider a cube-spring system, Fig. 1.1(a), consisting of a cube
with mass M suspended from a rigid frame on some massless spring that
extends only vertically. Dynamics investigates motion of the cube in
time subject to forces acting on or within the system. If one can, it
is convenient to precede such an investigation by a study of the motion
and the forces separately.

To the first end, let us mention the obvious geometric possibilities
of the cube moving in time without any regard to what causes the motion.
The extension of the spring, if any, may be measured along a real axis Q.
This axis is the geometric locus for all possible time-instantaneous
positions of the system while in motion. This is why Q is a particular

case of what is called the system Configuration Space.
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Elementary mechanics, however, teaches that the knowledge of
positions does not suffice for a full information upon the state of the
system. We need to know velocities as well. Assuming the time-
instantaneous values of velocity measured along a real axis P perpendic-
ular to Q, we obtain the states of the system as points in the plane
Q % P varying in time. The Cartesian product X = Q x P is called the
state space of the system, or traditionally the phase space. We justify
the use of this latter name in Chapter 3.

The state space, or some admissible subset of it, represents the
geometric locus of states varying in time during the motion of the
system, i.e. the kinematic capacity of the system. It will be pertinent
for the notion of kinematic structure which we introduce later in this
text.

It is then up to the forces acting to use this capacity and select
specific paths for the system in the state space.

In turn, we look at the forces above, i.e. the system itself, to
see what actually is moving, without reference to the motion. For this
purpose, we let the system rest in an equilibrium - that is, the acting

forces, the weight of the cube W = Mg (g - gravity coefficient) and the



restoring force Fy in the spring balance to zero: Mg - Fg = 0. We call
such a system static.

The spring extends under load. A certain static extension q°
measured in Q corresponds to the weight Mg. Let k be the load necessary
to produce a unit extension. Then Fg = Mg = kqs and qs = Mg/k . The
static extension is also the equilibrium position of the cube. Suppose
the weight W changes, producing a deflection * §q from the equilibrium
position. It makes the total extension of the spring equal to some
qS * 8q = q € Q. Then the corresponding restoring force in the spring
is - kq. Without narrowing generality, we may conveniently place the
origin of Q at the equilibrium position, qs = 0, yielding q = % &q.
Obviously the values kq represent the capacity of the spring to bear
various loads W, i.e. the capacity to do the job. Thus the function
Y :y=-kq, qe€ Q is called the static characteristic of the spring.
Note that considering y versus q is conventional. For some purposes,
just the opposite may be more suitable, both y and q being ex-equo what
will be later called system variables. As the spring adjoints the cube
to its frame of suspension (environment) the static characteristic of
the spring relates W through the restoring force to the frame of refer-
ence - the origin of Q. Analogously, we may say that the equality
Mg = constant works as the static characteristic of the cube, relating
the weight to itself, i.e. it is the eigen-characteristic. These two
characteristics together belong to the static organization of the system.
In our case, the organization takes the shape of the resultant force.
The restoring force is - kq, where in general q = qs + §q. The force
adds to the weight Mg yielding the resultant

F=Mg - k(q® £ 8q) = Mg - Fg * k6q = £ kéq .



For q = * 8q the resultant is identical with the spring-characteristic.
A suitable class of static organizations will be later defined to be a
statie structure of the system. Incidentally, the organization is
obviously a relation on the space of the system variables. It ranges in
the sub-gpace of force-values, or more generally, space of organization
values.

We shall now go a step further in our static study of the cube-
spring system. The load used to produce a unit extension may not be
constant. In fact, it may depend upon the extension. For instance, the
suspension of our cube may be required to be less stiff (softer) or more
stiff (harder) for longer extensions of the spring. In general, this
yields a non-linear static characteristic of the spring: V¥(q) = k(q)q,
say specifically y = q - q®. The same argument relates ¥ to the
resultant. The equilibrium requires as before ¥(q) = q - q® = 0, granted
that we stick to a neighbourhood of the equilibrium discussed previously:
q = 0 with qs = 0. Presently there will be two other equilibria q = % 1.
By the above, we have rearranged the organization of the system. The
spring is now different, say conical instead of cylindric, even if the
wire maintains its previous cross-section.

Now let us move the static system in time. By an impulse or a
sudden application and removal of an external force, vibrations of the
system about the equilibrium can be obtained. Beginning at some time
instant t, € R for each t € [to,m) the cube deflects from the equilibrium
by some quantity q(t), thus measuring the time-instantaneous dynamic
extension of the spring. In deriving the differential equation of
motion, we use the Newton's second law stating that the product of mass

and its acceleration is equal to the resultant in direction of the



acceleration
(1.1.1) Mg(t) + ¥(q(t)) = o,

where dots mean differentiation with respect to time. Equivalently, we

have the system of two equations

g = p,
ﬁ "’P(q)»

(1.1.2)

where Y(q) = ¥(q)/M, accepting the common abbreviation q = q(t),

p = p(t). The values q(t), p(t) describe now the mentioned state of
the system or a point x(t) = (q(t),p(t)) in the two dimensional state
space X = Q X P. The variables q, p are thus called state variables.
In particular, for (1.1.2), owing to its shape (symplectic), Q of q's
is the Configuration Space and P of p's is the Space of Velocities.

A t,- family of solutions to (1.1.2) called motions takes the
geometric shape of a curve x : [tn,m) + X which passes through some
initial point x° = (q°,p%) € X and represents the state-path of the
system called the trajectory. We designate it by x(x°,[to,w)) meaning
{(x(x°,t) e X|t e [tn,m)} . The motions may be obtained individually as
curves in the space of events X X R starting at some initial event
(xo,to) € X X R, For details, the reader is referred to Sections 2.2.1
and 2.3.1. Since X = Q X P, we can map a trajectory from X into Q
obtaining the corresponding configuration-trajectory. We can also map a
motion from X X R into Q X R obtaining a configuration-motion.

Consider again y = ¥(q) but let the argument q be now a function
of time. Since ¥ is stationary (not dependent explicitly upon t ),
the static characteristic VY(q) 1lifted along the t- axis, cf. Fig. 1.2,

produces a cylindric surface S with identical t- sections, on which



the values ¥(q(t)) = ¥(t) are located. The surface may be seen as a

t - family of static characteristics. It is a part of what we shall
introduce later as the space of system values. Now, envisage a
configuration-motion underneath S in Q X R. Lifted up into S it
produces a line joining the values Y(t) along the motion. The line is
called a dynamic characteristic of the spring. We obviously have as
many of them as there are motions. Mapping the t - family S ,

together with all the dynamic characteristics on it, into the plane Oqy
one obtains in our stationary case the static characteristic.

Similar reasoning may be made for any other type of forces appear-
ing in the system - including explicitly time dependent external forces,
cf. Fig. 1.2(b), but then the surface S ceases to be cylindrical - will
live on its own, independently of the statics.

Further from the above, the reader may now expect the conclusion
that the kinetie system of the moving cube under forces is time
instantaneously static, cf. Fig. 1.2(c). Moreover, that the dymamic
characteristic along its selected (kinematic) motion actually uses only
some of the possibilities offered by S, i.e. the t- family of static
characteristics. These possibilities represent the kinetic structure of
the system.

The pattern changes only slightly if three cubes instead of one
are considered, cf. Fig. 1.1(b). Three configuration axes Q,, Q,, Q,
compassing the 3-dimensional configuration space Q together with three

velocity axes P,, P,, P, compassing the 3-dimensional velocity space P

2° T3
make up the state space X = Q *xQ,*xQ, xP, xP, XP, which repre-
sents the kinematic capacity of the system. As before, we let the

origin of X be located at one of the equilibria with the dynamic



