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FOREWORD

These are Lecture Notes of a course that I gave in Tel-Aviv University.
The aim of these Notes is to present the theory of representations of
GL(2,K) where K is a finite field. However, the presentation of the
material has in mind the theory of infinite dimensional representations of
GL(2,K), for local fields K.

I am very grateful to Moshe Jarden who took these Notes and worked them
out. Without him it would have been completely impossible to prepare them.

This course and its Notes are the first outcome of the Cissie & Aaron

Beare Chair in Algebra and Number Theory.

Ilya Piatetski-Shapiro
Tel-Aviv
November, 1982
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Introduction

The aim of these notes 1is to give a description of the complex irreducible
representations of the group G = GL(2,K), where K is a finite field with
q > 2 elements. In addition these notes should also serve as a motive for
the study of the representation of GL(2,K), where K 1is a local field.
Therefore an attempt has been made to reprove theorems by not explicitly using
the finiteness of K. —_
A central role in the description of the representations of G 1is played
by the Borel subgroup consisting of all the matrices
o B %
b=< ) 0,6 € K* BEK .
0 s
If HpsH, are characters of K, then a character u of B can be defined
by wu(b) = u](a)uz(d). Let 1§ = Indgu be the induced representation. If
T Mo then @ splits as the direct sum of a one-dimensional representation

which is given by formula op| (g9) = u](detg), and a g-

pzu],u]) p(U]’U])

dimensional irreducible representation P sty )" There are q-1 representa-
1°M

tions of each kind. If My # Hos then 1{ = P (s o) is an irreducible repre-
1°72

sentation of dimension q+1. There are %(q-l)(q-Z) representations of this
kind. Irreducible representations that are not of the above types are of
dimension g-1 and are called cuspidal representations. They are however also
connected with Tinear characters in the following way. Let L be the unique
quadratic extension of K and let v be a character of L™ for which there
does not exist a character x of K° such that x(NL/Kz) = v(z) for every

z€el™. Sucha v is said to be non-decomposable. For each non-decomposable
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character v of L we explicitly construct an irreducible representation ey
of G and prove that it is cuspidal. Conversely, we prove that every cuspidal
representation of G 1is of the form- p§ for some non-decomposable character
v of L*. Thus there are %{qz—q) cuspidal representations.

The connection between the irreducible representations of G and the
characters of K* and L™ gives rise to a reciprocity law. Let W(L/K) =
L* « G(L/K) be the semi-direct product of L™ by G(L/K). The irreducible
representations of W(L/K) (which is called the small Weil group) of dimen-
sion < 2. The announced reciprocity law is a natural bijection between the
two-dimensional representations of W(L/K) (including the reducible ones) and
the irreducible representations of G of dimension > 1.

Next we attempt to give explicit models for the irreducible representa-
tions of G. Let ¢ be a non-unit character of K+. The additive group K+

can be canonically identified with the subgroup U of G consisting of all

the matrices of the form

1 8
(5 sex.
0 1

Therefore ¢ can be also considered as a character of U. We prove that
Indﬁw splits into the direct sum of all irreducible representations ,p of G

of dimension > 1; each p appears with multiplicity 1. The space Vp on
G
u

which p acts can therefore be embedded into Ind;V Thus to each v € Vp

"
there corresponds a function Nv: G » € such that wv(ug) = w(u)W&(g) for
every u €U and g € G. The action of p on these functions is given by
Np(s)v(g) = Nv(gs). The collection of all the W, is called a Whittaker

model for p. It has the following property: For all characters w of K"

except possibly two there exists complex numbers Yp(m) such that

) x 0 ) ) 0 1 x)

(1) I (w) W ( )w(x = W ( )u X

PTxek™ VN xek ¥V \x 0

for every v € Vp. If p 1is a cuspidal representation, then Fp(w) is

defined for every w.



Complex Representations of GL(2,K) 3

Among the Whittaker functions for p there is a special one, Jp, called

the Bessel function of p, that satisfies
Jp(gu) = Jp(ug) = w(u)dp(g) for uel, geaG.

Further, Jp(]) =1 and Jp(u) =0 for u€U and u # 1. Substituting this

function for wv in (1) we have

)= 3,9 (: ;)w(x) .

This formula is then used in order to express Fp(w) in terms of Gauss sums:

If p = is a non-cuspidal representation of G, then

p(]J-I 9]-12)

1

_ w(- -1 -1 -1 -1
Fp(w) = q GK(U-I w sl’J)GK(uZ w ,‘b) * o

If p = o, is a cuspidal representation, then
- v(-1) . -1
Fp(w) 3 GL(v (“oNL/K) 5 ¢°TrL/K) .
The Gauss sum GK(x,w) is defined for a character ¢ of K* and a character
y of K+ by

G(x,v) = L, x(x)u(x) .
X€K

In particular it follows that in every case lrp(m)l = 1.
A1l these results are finally applied in order to compute the characters

table for G.



Chapter 1. Preliminaries: Representation theory;
the general linear group

In the first three sections of this chapter we bring all the definitions
and theorems about linear representations of finite groups that we need in
these notes. We refer to Serre [2] and to Lang [1] for the proofs. The re-
maining two sections are devoted to a description of the group-theoretical

properties of GL(2,K), where K 1is a finite field.

1. Linear representations of finite groups.

Let V be a finite dimensional vector space over the field ¢ of the
complex numbers. Denote by Aut(V) the group of all automorphisms of V. Let

G be a finite group. A linear representation of G in V 1is a homomorphism

p of G into Aut(V). V is said to be the representation space of p and

is also denoted by Vp. We shall also say that G acts on Vp throu 0.
The dimension of o is defined to be the dimension of Vo and is denoted by
dim p. Two representations p and o' of G are said to be isomorphic, if
there exists an isomorphism 6: Vp > Vp. such that 6op(g) = p'(g)os for
every g € G. We shall usually identify isomorphic representations.

A representation of G of dimension 1 1is a homomorphism u of G into
the multiplicative group ¢* of €. Such a representation is called in these
notes a character of G. In particular, the unit character is the homomorphism
of G into €~ obtaining the value 1 for every g € G.

Let p be a representation of G and let H be a subgroup of G.
Suppose that wu is a character of H for which there exists a non-zero

3 Vp such that p(h)v = u(h)v for every h € H. Then u is said to be an
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eigenvalue of H (with respect to p) and v 1is said to be an eigenvector of
H that belongs to u.

Again consider a representation o of G and let V' be a subsbace of
vV = Vp which is left invariant by p(g) for every g € G. In this case we
say that V' is left invariant by G or that V' is a G-subspace of V. Then
the restriction map of p(g) to V' gives rise to a representation p' of G
with V' as its representation space. This representation is said to be a sub-
representation of p and we write p' < p. By a theorem of Maschke V' has a
complement in V, i.e., there exists another G-subspace V" of V such that
V=V'ev" (c.f. Serre [2, p. 18]). Let p" be the corresponding subrepresen-
tation of P+ Then o is said to be a direct sum of p' and p" and we write
p = p'Bp". Clearly dim p = dim p' + dim p". The direct sum of n representa-
tions of G, all isomorphic to o, 1is denoted by np. A representation p of
V' is said to be irreducible if it does not have a sub-representation p' of a
lTower dimension. By the theorem of Mascke this is equivalent to saying that o
cannot be decomposed as a direct sum p = p'®p" with dim o' < dim p. It
follows that every representation p of G can be represented as a direct sum
p = EE%nipi’ where the p; are distinct (i.e., non-isomorphic) irreducible
repr;;entations of G. This decomposition of p 1is unique, up to the order of
the summands (c.f., Serre [3, p. 34]).

There are only finitely many irreducible representations PyaeseaPy of G.

Their number h is equal to the number of the conjugacy classes of G (c.f.,

Serre [3, p. 32]). Their dimensions satisfy the formula

() (dim p.)% = |6] .

ne-—1>s
=

i

If G 1is abelian, then (1) implies that the irreducible representations of

G are of dimension 1 (i.e., they are characters) and that their number is equal
to |G|, wnich is in this case the number of the conjugacy classes of G.

Further, the set of characters of G forms a multiplicative group G which is

isomorphic to G. If 1 # x € G, then we have the following orthogonality
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relation éGx(g) = 0. A lemma of Artin says that the characters of G are
g

Tinearly independent, i.e., if a are complex numbers such that § a x(g)= 0
S X
X
for every q € G, then g, = 0 for-all x €G (cf. Lang [1, p. 209]). Now,

G s canonically isomorphic to the dual ¢ of . Hence, the dual to this
lemma is also true: If bg are complex numbers such that géGng(g) =0 for
every x € G, then bg =0 forall g €G.

If G 1is again an arbitrary finite group, then we deduce that it has
(G:G') characters, where G' is the commutator subgroup of G. Another con-
sequence of formula (1) is that if distinct irreducible representations
P15 P, of G satisfy .E](dim pi)2 = G, then they are all the represen-
tations of G. b

Let p be a representation of a finite group G. Then Vp can be also
considered as a module over the group-ring . €[G]. If p' 1is an additional
representation of G, then we write (p,p') = dim HomC[G](Vp,Vp.). The form
(psp') s clearly symmetric and bilinear with respect to direct sums. If
both p and p' are irreducible, then, by a lemma of Schur, (p,p') =1 if
p=p' and (p,p') =0 if p # p' (cf. [2, p. 25]). It follows that two
arbitrary representations p and p' are disjoint, i.e., have no common 'irre-
ducible subrepresentation, if and only if (p,p') = 0. In particulag, an
irreducible representation p appears in a representation o', i.e.,
p < p's if and only if (p,p') # 0; dindeed (p,p') 1is equal to the multi-
plicity in which o appears in p'.

Let EndC[G]Vp = Homm[G](Vp,Vp). It is an algebra over € called the
Schur algebra. If p s irreducible, then Endt[G]Vnp is isomorphic to
Mn(c), the algebra of all nxn matrices over €. If p = @nipi is the

canonic decomposition of a representation p, then, by Schur's lemma,

- J— _ 2
EndgrgyV = QMni(ﬁ)- Hence (p,p) = dim EndgpqqV. = Inf. It follows that o

has no multiple components, i.e., that n = 1 for all i, if and only if
E"dt[G]Vp is commutative. In this case dim Endm[G]Vp is the number of com-

ponents of »p.
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Finally consider a vector space V of dimension n over (. Every base
ViseeesV of V canonically defines an isomorphism Aut V = GL(n,C) (= the
group of all nxn invertible matrices over €). If p: G > Aut V ié a repre-
sentation of V, then we define Xp(g) to be the trace of p(g), where p(g)
is now considered as an element of GL(n,CL) via the above isomorphism.

Clearly tr o(g) does not depend on the choice of the basis ViseeesVy of V.
Hence X, G > C is a well defined function, called the character of p. It
is constant on conjugacy classes. Also X°19°2 = Xo] + xpz. Therefore xp is
said to be irreducible if p 1is irreducible. If dim p =1, then X, = X

In general one defines dim X, = dim p and refers to X, asa higher dimen-

sional ch@racter.

2. Induced representations.

Let G be a finite group and let H be a subgroup operating on a finite
dimensional C-vector space W through a representation t: H > Aut W. Define

a vector space V to be the set of-all functions f: G -~ W that satisfy
f(hg) = t(h)f(g) forall heH and ge€G .

Thus, in order to define an element f € V, it suffices to give its values on
a system of representatives H/G of the left classes of G modulo H. Define

an operation of G on V by
(sf)(g) = f(gs) for s,g€G and fEV .

The C[G] - Module V thus obtainedbis called the induced module of W from
H to G and is denoted by Indﬁr.

We embed W in V by mapping each w € W onto the function fw: W->C
defined by fw(g) = t(g)w if g € H and fw(g) =0 if g € G-H. Clearly
this is a C[H] - modules embedding. The image of W in V consists of all

the functions f € V that vanish on G-H.
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Let now G = k;)rH be a decomposition of G into left classes modulo H.
reR

For every f € V and for every r € R we define a function fr €V by
fr(g) = f(g) if g€ Hr'] and fr(g) = 0 otherwise. Then r']fr belongs to

W (after identifying W with its image in V) and f = J r(r']fr). Thus V
rerR

is isomorphic to €D rW. In particular we have that dim V = (G:H)dim W.
reR

Using this isomorphism one obtains also a canonical isomorphism V z E[G]QC[H]N,
where G operates on the right-hand side by multiplication on the left of the
first factor. This form of the induced representation is convenient to prove

the following fundamental properties. (a) Transitivity: If J is a subgroup

of H and t: J > Aut U is a representation of J, then

Ind%U = Ind@

H
J H(IndJU) .

(b) Frobenius reciprocity theorem: With the above notation let E be a (C[G]-
module and denote by Reng the C[H]-module obtained from E by considering

only the action of H. Then we have the following canonical isomorphism:
Hom,. - (Ind%W,E) ¥ Hom_. - (W,Res’E)
¢[G] H™? C[H]'">""H
(cf. [3, p. 23]). In particular,

s G L A G
dim Homc[G](Inde,E) = dim Hom ](N,ResHE) .

C[H

If t and o are the representations of H and G that correspond to W
and E, vrespectively, then the Tast equality can be rewritten, in the nota-

tion of section 1, as
(Indﬁr,o)G = (T,RESﬁO)H 5

In particular, if both t and o are irreducible, then the multiplicity of o
in Indﬁr is equal to the multiplicity of <t in Resﬁo.
Finally, if t is a representation of a subgroup H of a group G and

p = Indgr, then X, can be calculated from Xg by the following formula
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x,(9) = T%T' gGi;(sgs'1) = X (ror™)
r

reR
where YT is the function on G that vanishes outside H and coincides with

X, on H; R is a system of representatives of right classes of G modulo H

(cf. [2, p. 72]).

3. The Schur algebra.

Proposition 3.1: Let H and J be subgroups of a finite group G. Let »p

and o be representations of H and J, respectively. Then
Homm[G](Ind v 00 Indgvc) is isomorphic to the vector space of all functions

F: G - HomC(Vp,VO) satisfying

(1) F(3gh) = o(3)F(g)epn(h)

for all j €J, g€G and h €H.
Proof: Let 5 = Indlo, &= 1IndSo and n = (6:H). Denote by F' the vector

space of all functions
©: GxG » HomC(Vp,Vc)
that satisfy
. o -1
(2) ‘D(Jg'l,hgz) = U(J)WJ(Q] sgz)"p(h)

for all j €J, h €H and 9149 € G. For every ¢ € F' we define an ele-
ment Tw € Homt(va,va) as follows: If f € Vp, then T¢f: G~ Vc is the map
defined by
(@ N6 = 5 Lol (fir) 5

reG
clearly the map o - T¢ is a homomorphish F' > Homc(va,va). It is injective.
Indeed, suppose that Tw =0. Let s€G, let vE Vp and define a function

f v € Vp by
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p(h)v if g = hs
f (9)
0 if g £Hs .

Then substituting f = fS in (3) we have by (2) that o(g,s)v = 0. Hence

v
o(g,s) =0, i.e., @=0.
The dimension of F' s equal to (G:H)(G:J)(dimp)(dims) by (2). This
is also the dimension of Homc(VB,Va). Hence T s an isomorphism.
Denote now by Fé the subspace of all ¢ € F' such that

T‘p € Homﬁ[G](Va,Va). Clearly o € FG if and only if

(4) § olgarx N(F(r) = T olgx,r) (£(r))
reG €G

r

for all f € VS' Substituting f = f in (4), we have that (4) is equivalent

SV
to the condition

(5) w(g,rx']) = o(gs,r) for all g,r,x €G .

For every function F: G -+ Homc(vp,vc) that satisfies (1), we define a
function «o: GxG »-Homc(vp,va) by

(6) o(9,,9,) = F(6,9;") .

Then ¢ satisfies (5) and thus it belongs to Fé. Conversely, starting from

@ in Fé, we define an F: G -~ Homt(vp,Vo) by

F(g) = o(g,1) .

Then F satisfies (1) and the ¢ defined by (6) coincides with the one we
started with. Thus F 1is isomorphic to Fé.
For every F € F denote by T, the element of HomcEG](Va,Va) defined

by

(7) (TF)(g) = + EGF(gr“)(f(r)) :
2

Then the map F - TF is the desired isomorphism. //



