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Foreword

At the time of his sudden death in 1976 the manuscript of this book was
found among Professor Slater’s effects. It is essentially complete, having
been finished just a few days before. The only addition that has been made
is a list of references relevant to the discussion in the text.

This work represents the last in a series of books by Professor Slater,
on the quantum theory of matter, consisting of seven volumes, published
from 1960 to 1975. This monumental work covers all aspects of the modern
theory of atoms, molecules, and solids. The present volume could be con-
sidered an addendum to this series, in that it is directed toward an unsolved
problem of the quantum theory of matter, that is, how to solve exactly the
self-consistent field problem.

In the last ten years of his life Professor Slater had been concerned with
the local density form of the self-consistent field. His work, together with
that of many collaborators, had resulted in the Xo method. Most of his
publications during this time were concerned with the development of this
method and its application to a wide range of problems. The usefulness of
this model has been remarkable, and it has greatly helped in the under-
standing of complicated systems, for which more sophisticated methods
are not applicable because of the limitations of present-day computers.
However, the equations resulting from the X« model have not yet been
solved exactly. The applications so far have all involved approximations
such as that of the “muffin-tin” potential, perturbation theory, the use of a
limited basis set, and many other numerical methods. These approximations
are not so severe as to invalidate the calculated results for many of the
properties of molecules and solids. However, in certain cases, they have
proved to be inadequate.

It was Professor Slater’s purpose, in this book, to suggest a different
scheme of solution of the equations. This scheme is essentially a revival
of the cellular method, invented forty years ago but presented in the light
of recent developments. The method as presented here is not complete in
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all details but is simply an outline of the directions in which Professor Slater
thought the research should proceed. It is indeed a great loss that he will
not be around to continue the work. However, it is hoped that the publica-
tion of this book will encourage others to follow along the same lines and
perhaps to complete the research to the end which Professor Slater intended.

JouN W. D. CONNOLLY

Washington, D. C.
January 1979
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| Molecular orbitals and the self-consistent field

The concept of molecular orbitals is inextricably tied up with the idea of the
self-consistent field. In a molecular system consisting of N electrons and
many nuclei, the latter being assumed to be at rest, each electron will really
move in the electric field produced by all N — 1 other electrons and by all
the nuclei. If N is greater than a very small number, this forms an impossibly
difficult problem for rigorous solution in quantum mechanics, as it would be
impossibly difficult in classical Newtonian mechanics. One recalls the very
great difficulty of even the celebrated classical three-body problem, N = 3,
in celestial mechanics.

Workers in the electronic problem of space charge in a vacuum tube
encountered this difficulty many years ago, and overcame it by a very obvious
device: they assumed that the effect of all N — 1 other electrons could be
approximated by averaging the density of these other electrons over their
complex motions and finding the electric field arising from this continuous
averaged density. They studied the motion of the one remaining electron in
the field of these N — 1 averaged charges. Then they demanded that the paths
of the electrons, so computed, should lead to the same charge density that
was assumed in the first place as that of the space charge.

The electric field so set up, produced by the electrons in their averaged
motions and by any electrodes present (in the electronics problem) or by any
nuclei present (in the molecule), is what we now call a self-consistent field. The
name was introduced by D. R. Hartree in 1928. He was studying the electrons
in an atom, moving around its nucleus. The same concept was applied at the
same time by F. Hund, R. S. Mulliken, and J. E. Lennard-Jones to the
molecular problem, and it formed the basis of theories of electrons in crystals
set up around the same time by W. Heisenberg, F. Bloch, L. Brillouin,
A. H. Wilson, and many others. We now apply the terminology of the self-
consistent field to all these problems. The individual electrons then move in
a fixed external field, and their wave functions, as found from the solution of
Schrodinger’s equation, are called orbitals—atomic orbitals for the atomic
case, molecular orbitals for molecules or crystals.

The effect of this approximation is to reduce the many-body problem from
a 3N-dimensional one, in the three coordinates of all N electrons, to N
separate three-dimensional problems, an enormous simplification. The
Schrodinger equation for one of the molecular orbitals is still a difficult one.
For the atom, Hartree’s problem, it is quite simple, on account of the spheri-
cal symmetry. But in the molecule or crystal we no longer hayg this symmetry,
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except in the neighborhood of one of the nuclei. A large part of our effort in
this volume must go to examining adequate ways to handle the nonspherical
problem of Schrédinger’s equation in the molecule, making full use of our
experience in solving the spherical atomic problem. But we must also in-
vestigate the total energy of the many-electron problem, as we compute it
from the atomic orbitals determined self-consistently. We shall first look into
this question of the interrelationship of the three-dimensional and 3N-
dimensional problems, and shall find that an approximation, the so-called
Xo approximation, can be set up to overcome the larger part of the difficulty
of the 3N-dimensional problem. Then we go on to apply these methods to
actual molecular calculations.

We start with Hartree’s ideas. He was considering an atom or ion of N
electrons, surrounding a nucleus at rest, with atomic number Z. Each
electron, of course, is acted on electrostatically by the nucleus and all N — 1
of the other electrons. He wished to replace the very complicated field
exerted by the other electrons, which depends on just where these electrons
are, by a single potential arising from the average positions of the other
electrons. He then solved the Schrodinger equation for wave functions of a
single electron moving subject to this averaged potential. If u; is such a wave
function or atomic orbital, normalized so that the integral over all space of
ufu; is unity, he assumed that N of these wave functions represented occupied
states in the atom and that ufu; represented the magnitude of the charge
density (in units of the electronic charge) of the ith electron. The total charge
density of all electrons would then be — ) (i)ufu;, where the summation goes
over the occupied orbitals and where we have used the minus sign to indicate
that the electrons have a negative charge. We find it convenient to assign
occupation numbers n; to the states, unity for an occupied state, zero for an
empty one. Then the total electronic charge density is

p = —Y (nutu; (1-1)

where now the summation can go over all orbitals, both occupied and empty.

Hartree next set up the potential in which the ith electron moves. We use
atomic units: the rydberg as a unit of energy, (although Hartree used 2
rydbergs as a unit, ordinarily called a hartree), and a unit of distance, now
called the bohr, equal to the radius of the 1s orbit of hydrogen in Bohr’s
atomic theory. In these units the potential arising from the nucleus, at dis-
tance r, is 2Z/r. The potential arising from the charge located in all volume
clements dv,, at a point 1 distant from such a volume element by a distance
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Fia, 18 jp(Z)(2/r12)dv2, where the integral extends over all space and where
p(2) is the charge density at point 2. However, Hartree naturally assumed that
a given electron could not act on itself. Hence for an electron in the ith orbital,
he omitted the quantity u¥u; from the charge density as given in Equation 1-1.
We can describe the situation by saying that the potential acting on the ith
electron at position 1 is

V1) = V(1) + VD) + VD) (1-2)

2Z 2
() ==, ) = [ p(2) <T> dvs,

1

where

V) = [ur@ui2) (—2—) dv,
Fi2
Thus Vj is the nuclear potential, V, the electronic potential arising from all
electrons, and Vy; the correction term arising because the electron in one
orbital does not act on itself.
Hartree then assumed that the electron moving in the ith orbital had a
Schrédinger equation

—V2u;(1) = Vaui(1) = gu(1) (1-3)

where —V? is the kinetic energy in our atomic units, — V; is the potential
energy of the negative electron in the potential V; of Equation 1-2, and ¢; is
the one-electron energy. For the spherical symmetry found in the atom it is
easy to solve Equation 1-3, as we show in detail in Chapters 3—-5. The solu-
tions, in spherical polar coordinates, are products of spherical harmonics of
the angles and a function of the radius vector r. This radial function has an
ordinary differential equation which can be easily solved by numerical
methods. For certain discrete (negative) energies—the eigenvalues of the
problem—we find functions—the eigenfunctions—that are regular both at
the nucleus and at infinity. Hartree demanded for self-consistency that these
eigenfunctions, normalized, should be identical with the functions u; met in
Equation 1-1.

This would not automatically happen, and Hartree devised a method of
successive approximations, or iteration, to secure functions which had this
property. Namely, he took the u;’s resulting from solving Equation 1-3 at one
stage of the process and substituted them in Equation 1-1 for setting up the
next stage of iteration. After a number of iterations, he found that the initial
and final u;’s were identical. He gave the name self-consistent to the resulting
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field, potential, and wave functions. He found that the self-consistent charge
density from Equation 1-1 gave a very good approximation to the experi-
mentally determined charge density in the atom. Furthermore, the difference
between the energy values of an occupied state and an empty state gave a good
approximation to the experimentally determined excitation energies. Ordi-
narily in the ground state of an atom it was found that the eigenfunctions of
lowest energy should be occupied, the higher ones empty, although occasional
cases did not fit in with this general rule.

At the same time Hartree was doing this work on atoms, we have mentioned
earlier that Hund, Mulliken, and Lennard-Jones were considering simple
molecules from essentially the same point of view, although the two sets of
workers were at first independent of each other. The only difference in the
formulation is that the nuclear potential Vy = 2Z/r, of Equation 1-2 had to
be replaced by a sum of such terms for the potential arising from all nuclei in
the molecule. The equivalent Schrodinger equation, however, was felt almost
impossibly difficult to solve directly, because it was not spherically sym-
metrical. Thus the results of this method of investigation of molecules were
used only as a qualitative procedure until after World War I1.

In 1930 it occurred to several workers that it ought to be possible to set up
a many-electron wave function from the atomic orbitals u; and to apply the
variation method of quantum mechanics to this wave function. It is a funda-
mental principle of wave mechanics that if we have an approximate wave
function and compute from it the average value of the many-electron
Hamiltonian H over it, varying the approximate wave function to minimize
the average value, the result will represent the closest approximation to the
true wave function we can attain using the set of functions considered, and
the average Hamiltonian must lie higher than the ground-state energy. If we
set up a product function, u(1)u,(2) - - - uy(N), where uy - - - uy represent the
N occupied orbitals and (1),..., (N) represent the coordinates of the N
electrons, the product of this function and its complex conjugate is a product
of quantities u(i)u;(i) for the various electrons. This product would indicate
that the electrons move independently of each other, which is at the found-
ation of Hartree’s idea of self-consistency. The many-electron Hamiltonian
for an atomic or molecular system, in the atomic units we are using, is

—Y0V2 - Yia) e

r

27,7,
Fap

(1-4)

. 2 .
+ Y (pairs ij, i # j) — + Y (pairs ab, a # b)
Tij
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Here the indices i refer to the electrons; the indices a refer to the nuclei; r;,
is the distance between the ith electron and the nucleus «; r;; is the distance
between electrons i and j, and r,, is the distance between nuclei a and b. In
this case, as in all others in the text, the nuclei are assumed to be at rest.

When this Hamiltonian was allowed to operate on the product wave
function u,(1) - - - uy(N), multiplied by the conjugate of the wave function,
and integrated over all values of the 3N-dimensional space of the 3N
electronic coordinates, one had an expression for the total energy of the
atom or molecule. If one of the orbitals was varied and the change in energy
was computed, it was found that the energy minimum came precisely when
the u’s satisfied Hartree’s Equation 1-3. This thus formed a theoretical basis
for the procedure Hartree had arrived at by intuition.

In the meantime, it had been found that the antisymmetry of the wave
function when the coordinates (and spins) of two electrons were interchanged
was an expression of Pauli’s exclusion principle. One had to enlarge the
meaning of the orbitals u; to include dependence on spins, so that for each
electron one could have both a spin-up and a spin-down orbital, hence called
a spin orbital. To secure the required antisymmetry, it was necessary to write
the many-electron wave function not in the form of a product u(1) - - - uy(N)
but in the form of a determinant,

u(1) uy(2) -+ uy(N)
L R 19
uy(l) un(2) -+ uy(N)

where the factor (N!)™! gives a normalized function, if the spin orbitals u; are
orthonormal.

In this case, one can still vary one of the spin orbitals u; to minimize the
total energy. This total energy has the form

CEHFy = = Yijn; [z Viudv — Y(iym; [urViudo — 33 (i [uz Vs,

. 2
- %Z(iaj)ninjo(msirnsj) f”i*(l)“}k(z) <r> uj(Nuy2)dv, dv,
12
+ Y (pairs ab, a # b) 222y (1-6)

Fap
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where Vy = ) (a)2Z,/r,,, V, is given in Equation 1-2, and é(mm;) indicates
that one includes only those pairs of occupied orbitals i, j for which the spin
quantum numbers mg or my; are the same or pairs of spin orbitals with
parallel spins. When one varies one of the spin orbitals to minimize the total
energy, the resulting one-electron Schrédinger equation is

—V2u; — (Vy + Vou; — Y(j) d(mgmy;) |:J‘uj‘(2) <ri> u;(2) dvz:| u; = g (1-7)
12

The self-consistent-field method using Equations 1-6 and 1-7 is called the
Hartree—Fock method. Hartree and Fock both were able to develop the
method into a practical form for solving atomic problems, and the results
proved to be slightly closer to experiment than those obtained by the original
Hartree method. The last term of Equations 1-6 and 1-7 is obviously much
more complicated than the corresponding one in Equations 1-2 and 1-3. In
connection with the Hartree—Fock equations it is generally referred to as the
exchange term, which is why we have used the subscript X to refer to it. Its
dependence on spin has led to many applications in magnetic problems. But
its existence in the Hartree—Fock equations complicated the molecular
problem so much that it seemed quite out of the question to make any
straightforward calculation of molecular orbitals using the Hartree—Fock
method, except for the very simplest molecules (in practice, for H,).

However, the interpretation of the Hartree—Fock method as one for
minimizing the energy of Equation 1-6, with the Hamiltonian of Equation
1-4, suggested quite a different approach to the solution of the molecular
orbital problem, which has been widely developed since World War II. This
was based on the so-called LCAO, (linear combination of atomic orbitals)
method, which had been used in a qualitative way since the earliest days of
molecular orbitals. Approximate ways of computing molecular orbitals had
shown that a linear combination of atomic orbitals, located on the various
nuclei taking part in a chemical bond, gave quite a good first approximation.
Furthermore, it had been shown that quite good approximations to atomic
orbitals could be set up by use of functions exp(—ar)r” times a spherical
harmonic of the angles. Linear combinations of such functions on each of
the atoms concerned were then substituted for the u;’s of Equation 1-6, with
coefficients to be determined so as to minimize the energy. C. C. J. Roothaan,
in 1951, formulated the required equations for the coefficients, which have
been widely used. A great deal of effort was put into the determination of the
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best constants a to use in the various basis functions exp(—ar)r". When
sufficiently large basis sets are used, very close approaches to Hartree—Fock
molecular orbitals can be set up in this way.

It is, however, extremely demanding in the amount of computer time and
capacity required. For this reason it was only in the 1960s that really good
results began to be obtained by use of this method. An important improve-
ment in technique arose from the discovery of S. F. Boys, during the decade
of the 1950s, that if the orbitals were made up out of Gaussian functions of
the form exp(—ar?)r" instead of the functions exp(—ar)r", the necessary
integrals were much simpler to compute. Most of the present work is being
done with the use of the Gaussian functions. But when one multiplies the
exchange term of Equation 1-6 by the complex conjugate of one of the
orbitals and integrates over dv,, as is required to get the exchange terms in
the total energy, one is dealing with a product of four orbitals. Each term
leads to what is called a four-center integral, since the atomic orbitals of each
of the molecular orbitals can be located on four separate nuclei. The experts
in the use of this method, for instance E. Clementi, were speaking of literally
billions of integrals which had to be computed and combined to get the
complete result. For a large molecule, only the very largest computers
sufficed, and the computing time required was quite colossal. As the 1960s
led into the 1970s, it became quite obvious that this method was bound to
lead to eventual trouble, since one was reaching the limit of what any com-
puter in sight could do.

In the meantime, solid-state theory had been proceeding along quite a
different direction. E. Wigner and F. Seitz, in 1933, had suggested what is
now called a cellular method of handling the problem of computing the
molecular orbitals of a simple crystal. These orbitals have eigenvalues ¢
which form continuous bands, for which reason this type of theory is known
as energy band theory. Furthermore, Wigner and Seitz had made very
valuable observations about the simplification of the exchange terms. They
had used corresponding terms developed earlier by Dirac and Bloch for
studying the magnetic properties of an electron gas.

Unfortunately, the quantum chemical theorists were almost completely
unaware of these developments. However, the author, interested in both the
molecular and the solid-state theory, realized from 1933 that the general
methods introduced by Wigner and Seitz and developed during the 1930s
into practical methods for calculating energy bands should be equally
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adaptable to the molecular problem. For a variety of reasons, it has taken up
to the present decade to get these methods into a form adaptable for molec-
ular calculations.

In the MS-Xo method of K. H. Johnson and F. C. Smith, Jr., (MS refers to
multiple scattering; Xo to an exchange term with a parameter alpha), we
have a method of calculation going back in spirit to the original calculations
of Hartree, using a straightforward solution of the one-electron Schrédinger
equation, rather than the LCAO schemes which lead to the great computa-
tional difficulties. Results of these newer methods, on quite complicated
molecules, show accuracy which is in most cases better than the best Hartree—
Fock calculations done by the LCAO method, with computer times in many
cases a thousand times less than for the conventional methods. There are
some features in which this MS-X« method is not completely rigorous and
satisfactory. But outgrowths of this method, which are described in the
following chapters, give promise of overcoming the unsatisfactory features,
while retaining the computational advantages of the method.

1 The X alpha method

At the end of the preceding chapter it was mentioned that Wigner and Seitz
had made use of earlier work by Dirac and Bloch in setting up a simplified
form for the exchange term. Dirac and Bloch had been considering a perfect
gas composed of N electrons. The one-electron wave function u; of an
electron in a perfect gas is of the nature of a plane wave, expressed in expo-
nential form as exp(ik - r), where k is a so-called wave vector, r the radius
vector. One can set up the determinantal many-electron function for N
electrons in the form of Equation 1-5. If N1 of the electrons have spins
pointing up and N| have spins pointing down, the determinant factors into
two terms, one a determinant formed from the N1 electrons with spin pointing
up, the other formed from the electrons with spin pointing down.

If we now fix our attention on an electron with spin up, at a given position
in space, we can answer from the wave function the question, what is the
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R
Figure 2.1 Density of charge near an electron. plotted against distance from a given electron.
Curve A4 for another electron of same spin, B of opposite spin, C for both spins combined.
One unit of density represents maximum allowable value for electron of one spin. Integrated
deficiency of charge, for curves 4 and C, 1 electron unit; for B, zero. From Slater, Rev. Mod.
Phys., 6,209 (1934).

density of other electrons of spin up in the neighborhood of the one electron
at the given position? We find that at a large distance from the fixed electron,
the density is just the average value we should expect to find in the perfect
gas. Near the given electron, however, there is a deficiency of charge, as indi-
cated in Figure 2.1. The density of other electrons of the same spin falls to
zero at the position of the fixed electron, and the integrated deficiency of
electronic charge amounts to exactly one electron. This electron deficiency
is called the Fermi hole.

The meaning of the Fermi hole is obvious. There are only NT — 1 other
electrons of spin up, aside from the electron at the fixed position. Thus the
Fermi hole represents the sphere of influence, so to speak, from which one
electron is removed, so that the remaining charge density will integrate to
N1 — 1 electrons. There is no corresponding Fermi hole for electrons of spin
down, near an electron of spin up. There are N{ electrons of spin down, and
to the approximation in which the electrons are represented by a perfect gas,
they have a uniform unperturbed density in the neighborhood of an electron
of spin up. Wigner and Seitz, however, realized that an electron of spin up
would repel an electron of spin down electrostatically, and that this would
tend to keep them apart. They concluded that the probability of finding an
electron of spin down near an electron of spin up would be given by a curve
similar to that of curve B in Figure 2.1, whereas the probability of finding the
electron of spin up is given by curve A. This additional effect, a result of
electrostatics rather than of the antisymmetry of the wave function, is
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generally called the correlation effect. Its importance is rather small com-
pared to the effect of the Fermi hole.

Dirac and Bloch studied the effect of the Fermi hole on the total energy of
the electron gas. They pictured a free electron gas as consisting of N electrons,
which, of course, would carry a very large negative charge, plus a uniformly
distributed positive charge, just enough to cancel the negative charge. This
positive charge was supposed to take the place of the nuclei. Then an electron
would feel no electrostatic effect whatever, since all electrostatic charge was
neutralized, except for its interaction with the positive charge left unneu-
tralized because an electron was removed from the Fermi hole. In other
words, the electron had a potential energy as if it were at the center of a
positive charge distribution, arising from a single positive charge distributed
as in the Fermi hole.

We can use a simple argument to get the dimensional form of the resulting
energy term. Let us suppose that the density of electrons of spin up is p . If
we replaced the Fermi hole by a sphere, such that within this sphere of radius
r there was no electronic charge of spin up, whereas outside the sphere the
density was p1T, we can calculate the radius of the sphere. The volume of
the sphere is 4/3 nr>, so that we have the condition that this volume times the
density of charge must equal one electron. That is,

gnr3pT =—1 (2-1)
where the minus sign comes in because we are treating the electronic density
as negative. Hence we have r = (—3/4np?1)*/3. But the potential energy of an
electron at the center of a uniformly charged distribution of this sort can be
shown by electrostatics to be — 3/r in our atomic units. Thus we should find
that the energy of the electron was

(2-2)

—4 1/3
energy = —3 < in)

3

This argument is oversimplified, because, actually, the Fermi hole is like
that shown in Figure 2.1, rather than being a spherical hole with a sharp edge.
But the simple argument has shown correctly that the energy arising from
the Fermi hole should be proportional to the § power of the electron density
of spin up. The only correction that is needed is in the value of the constant
coeficient. It is this term that takes the place of the Vy; of Equation 1-2 or



