: : e 3
: : é,ﬁl‘f; E i' P@ §l‘:- - % 2 3
|1 anauaae
: s & . : 3 &
> k -w : : -. : -

Parsing Natural Language

Edited by

MARGARET KING

Dalle Molle Institute for Semantic
and Cognitive Studies.
University of Geneva, Switzerland

1983

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers

London New York
Paris San Diego San Francisco
SaoPaulo Sydney Tokyo Toronto

ACADEMIC PRESS INC. (LONDON) LTD.
24/28 Oval Road
London NW1

United States Edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

Copyright © 1983 by
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved
No part of this book may be reproduced in any form by photostat, microfilm, or any
other means, without written permission from the publishers

British Library Cataloguing in Publication Data
Parsing natural language.

1. Language and languages

I. King. M.

425 P123

ISBN 0-12-408280-7

Printed in Great Britain

CONTRIBUTORS

Eugene Charniak Department of Computer Science, Brown University,
Box 1910, Providence, Rhode Island 02912, U.S.A.

Anne De Roeck Dalle Molle Institute for Semantic and Cognitive
Studies, 54 rouie des Acacias, 1227 Geneva, Switzerland

Roderick Johnson Cenire for Computational Linguistics, UMIST,
P.O. Box 88, Sackville Street, Manchester M60 10D, England

Margaret King Dalle Molle Institute for Semantic and Cognitive
Studies, 54 route des Acacias, 1227 Geneva, Switzerland

Steve Pulman School of English and American Studies, University
of East Anglia, University Plain, Norwich NR4 7TJ, England

Graeme Ritchie Department of Computer Science, Herriot-Watt
University, 79 Grassmarket, Edinburgh EH1 2HJ, Scotland

Michael Rosner Dalle Molle Institute for Semantic and Cognitive
Studies, 54 route des Acacias, 1227 Geneva, Switzerland

Geoffrey Sampson University of Lancaster, Department of Linguistics
and Modern English Language, School of English, Lancaster
LAl 4YT, England

Steven Small Department of Computer Science, University of Rochester,
Rochester, NY 14627, U.S.A.

Giovanni B. Varile Commission for the European Communities,
DG XIII, Jean Monnet Building, Plateau du Kirchberg, Luxem-
bourg

Yorick Wilks University of Essex, Department of Language and
Linguistics, Wivenhoe Park, Colchester CO4 35Q, England

ACKNOWLEDGEMENTS

The initial work on this book was done in preparation for a Tutorial
on Parsing Natural Language, organised by the Dalle Molle Institute
for Semantic and Cognitive Studies of the University of Geneva, the
second in a series of tutorials held in Lugano under the general title
of the Lugano Tutorials. The authors and the organisers would like
to thank the Commune of Lugano for their continuing kindness in
providing us with a very beautiful setting for an intensive week’s work,
and for all their help with the organisation of the tutorial. We should
also like to thank Signor Angelo Dalle Molle, from whose original
creation of a forum for interdisciplinary and cross-national discussion
so much has sprung, and Martine Vermeire without whose constant
support and help we should have been left with nothing more than
random pieces of paper. Finally, the editor would like to add special
thanks to Franco Boschetti, without whom nothing would ever have
been possible, and to Anneke De Roeck, who took over far more
than was reasonable of the editorial work.

PREFACE

This book is a product of the rather odd relationship between artificial
intelligence and theoretical linguistics. The area of artificial intelligence
represented here is that of work designed to produce computer programs
capable of analysing natural language, usually for some practical
purpose such as the construction of question answering or of machine
translation systems. Theoretical linguistics takes the study of language
as an end in itself, and is mainly interested in giving a coherent
account of how language works. Clearly, each field ought to be able
to make use of the other. The theoretical linguist may regard a
computer program as a valid way of demonstrating that the theory
is in fact consistent: the artificial intelligence worker may make use
of the linguists’ theoretical proposals as alternatives to his own in the
construction of his programs. This book is the result of a week long
tutorial intended to facilitate and encourage the dialogue between the
two disciplines. One central theme, that of parsing, was chosen as the
chief topic of the tutorial, on the grounds that parsing is currently
proving of great interest to both parties. In order to facilitate discussion,
introductory material was included to give those from one of the
disciplines with little or no knowledge of the other some basic
background. Recent work on parsing was then reported and examined,
with the aim of describing the current state of the art and of stimulating
new research.

The pattern of the book reflects these aims. A preliminary Section
tries to establish a common starting point for those not expert in the
arca. The first chapter covers some basic terminology and defines
concepts from the theory of formal languages which are used extensively
by later chapters. The second chapter is -essentially historical, covering
early attempts at the computational application of the 1960s version

viii Preface

of transformational grammar. The importance of these attempts derives
chiefly from the nature of the problems encountered there. Much of
the work discussed in Sections 2 and 3 was directly or indirectly
stimulated by a desire to overcome them. The remaining chapters of
the introductory Section cover established techniques which are
frequently used as a starting point for discussion of new ideas, and
can therefore be considered essential background. In all of these
chapters, the approach taken has been to give the basic outline and
some critical evaluation, rather than to concentrate on detailed discussion.

The second Section concerns recent developments in the field of
syntax and their application to parsing. The developments discussed
fall within the field of transformational grammar and are described
in those terms. Nonetheless, where the ideas have been used within
a computational framework, the basic mechanisms of the parser
involved are given. The current revival of interest in syntactic methods
is clearly demonstrated in this Section.

The final Section, on parsing and semantics, consists mainly of a
discussion on the role of semantics within parsing, and an evaluation
of the different ways in which semantic information can be incorporated
into a parser. Its position at the end of the book reflects the history
of parsing over the last few years. An initial concentration on syntactic
parsers led to the realisation that syntax alone was not enough. The
reaction took the form of parsers aimed at minimising the use of
explicit syntactic information, relying instead on semantics. This period
in the history of parsing is by now well covered in the literature,
except for recent attempts to develop lexicon based semantic parsers,
as described in the final chapter.

The authors come from a variety of backgrounds within the gamut
of linguistics and artificial intelligence. Although the same material
is sometimes touched on by more than one author, the difference of
viewpoint of the authors concerned is in itself illuminating.

A final remark should be made about content. For many workers,
both in artificial intelligence and in linguistics, one of the most
important aspects of their work is in its psychological implications.
Thus, they use their work as the basis for the construction of
psychological theories, and also regard evidence that their theories
represent psychological reality as critical. This aspect of work on
parsing has been for the most part deliberately avoided, on the grounds
that to discuss it properly would demand a radically different approach
and would justify a book by itself. The exceptions to this are where
psychological considerations have had a direct effect on the design of
the. parser being discussed.

Margaret King January 1983

CONTENTS

Contributors
Acknowledgements

Preface

Section I Introductory
1 An Underview of Parsing
A. De Roeck

2 Transformational Parsing
M. King

3 Production Systems
M. Rosner

4 Parsing with Transition Networks
R. Johnson

5 Charts: a Data Structure for Parsing
N. Varile

Section 11 Developments in Syntactic Parsing

6 Deterministic Parsing
G. Sampson

7 A Parser with Something for Everyone
E. Charniak

vi

vii

19

35

59

73

89

91

117

X Contents

8 Context-free Parsing and the Adequacy of Context-free

Grammars 151

G. Sampson
9 Trace Theory, Parsing and Constraints 171
S. Pulman
Section III Parsing Semantics 197
10 Semantics in Parsing 199
G. Ritchie
11 Deep and Superficial Parsing 219
Y. Wilks
12 Parsing as Co-operative Distributional Inference.
Understanding through Memory Interactions 247
S. Small
Bibliography 277

Index 301

SECTION I
INTRODUCTORY

Apart from the first chapter which presents some basic terminology
which will be used throughout the rest of the book, this first Section
is primarily concerned with setting the stage for the two later Sections
and in picking out themes which will recur throughout the book.

It starts with a discussion of transformational parsing, where trans-
formational refers to the theory of transformational grammar as it
was presented between, say 1965 and 1972. It is not just historical
curiosity which motivates this discussion. Many of the early com-
putational parsers were based on, or derived from, the then current
theories of transformational grammar. Work on these parsers proved
seminal in many ways, not least in that they raised a whole series of
problems which later work aimed at resolving. Thus, one of the reasons
for the development of augmented transition networks (chapter 4), for
example, was to find an efficient way of finding a correct path through
a grammar, whilst preserving the power of a transformational grammar.

The proposal of charts (chapter 5) as a way of representing intermediate
and final results during a parse can be seen as a proposal to solve
the problem of non-determinism posed by a transformational parser.
At a certain point during the parse, more than one continuation is
possible, with no way of knowing which is the correct one. At this
point, the parser may opt for one of the possibilities and then be
prepared to come back on its tracks and try another if the choice
leads to a dead end, or it may try to follow both paths simultaneously
and risk finishing up carrying around a large number of competing
possibilities. (If each of two possibilities has in its turn two possibilities
- for further development then there are four possibilities — very large
numbers are very rapidly reached this way.) Chart structures offer a
way of keeping all the alternatives alive whilst minimising the amount
of structure being carried around.

2 Introductory

The connection with production systems (chapter 3) is less direct
in terms of historical development, but none the less strong. A
transformational grammar is a special case of a production system,
with all the associated problems of modularity and control. The
production system model allows ‘chunks’ of knowledge to be expressed
individually and independently, just as a transformational rule expresses
items of linguistic knowledge. But when these individual rules are
combined into a system of rules in order to do something with them,
they necessarily interact. The problem then becomes how to ensure
that they interact in the right way at the right time, which is precisely
the central problem of production systems.

So far we have picked out the themes of control, of representation
and of non-determinism. The first two of these themes are implicitly
present throughout the rest of this book. The third will receive special
attention in the next Section.

An Underview of Parsing

A. De Roeck

1. INTRODUCTION

A notion that should become clear at an early stage in a book like
this is the one of parsing in the context of language applications.
Clearly the answer to the question ‘what is parsing?’ should at least
fulfill two goals. First, it should be simple enough to contribute to a
general understanding of the issue. Second, it should be general enough
to be applicable to all instances. At the same time over-simplification
is to be avoided lest the information become irrelevant to any practical
purpose.

The only way I see of respecting these criteria consists of taking
recourse to what has already been established in the disciplines of
mathematical linguistics and compiling theory. Talking about grammars
seems a reasonable starting point.

2. GRAMMARS

2.1 Generative grammar

We all speak a language. Only physical limitations like tiredness, etc.
can stop us from inventing sentences in that language. Each of those

sentences may be different from all the ones thought of before and
we can go on expressing new sentences quasi-forever. All this means

4 A. De Roeck

is that in a language there are infinitely numerous different sentences.

The task the linguist has set himself is to describe human languages,
i.e. infinitely large sets of sentence$, and to do so in a manner that
enables him to make the difference between those utterances that are
part of the language described and those that are not. There are
essentially two ways he can go about his job. One consists of listing
all the sentences in a particular language. Any possible fragment is
then bound to be included in the enumeration and can be checked
against it. Nevertheless this method has some severe disadvantages.
First of all, having established that the number of sentences in a
language is infinitely numerous it becomes easy to deduce that one
would never be able to finish the list. Also, although putting a large
number of sentences down on paper may in some sense be equivalent
to describing them, the technique does not allow for the explicit
expresion of what those sentences have in common - i.e. some
generalities and characteristics of the language. For instance, listing
20,000 random English sentences does not explicitly specify that most
of them have a verb. Clearly, this way of doing the job is hardly
satisfactory.

There is, however, another possibility for describing all sentences
that make up a language; one that takes less time and does allow for
the expression of some generalities. It is based on the idea that humans,
who are after all beings with a limited memory, can decide when
hearing a sentence whether it belongs to a language they speak. This
suggests that, per language, there exist a finite number of criteria which
each sentence has to fulfill and of which humans have an implicit
knowledge they can use when making linguistic judgements. Linguists
set about trying to discover what those criteria may look like and
formulate them explicitly in a grammar.

So, a grammar contains a limited number of rules that describe a
language. If the rules only tell you what the sentences can look like
the grammar is said to have weak generative capacity; if they also
predict what structure will underly the sentences they describe, the
grammar has strong generative capacity. The term ‘generative’ refers
to the fact that the grammar explicitly describes or predicts ‘all and
only’ the sentences in a language: a generative grammar is an explicit
definition of a language, and the word ‘generative’ is in this context
in no way equivalent to ‘produce’ or ‘output’.

2.2 Formal Grammars
The point has come to translate all this into more formal terms. A

language can be seen as an infinitely large set of sentences. Each
sentence is characterised as a wellformed string over a finite vocabulary

An Underview of Parsing 5

of symbols. For the sake of simplicity, you can think of those symbols
as words, though this view is not quite correct. Wellformed means
that the form of the string — i.e. the way the symbols are put together
— does not violate certain criteria specified in rules of formation which
are contained in a grammar

At this level it no longer suffices to say that a grammar describes
a language. The notion of formal grammar surfaces here, still serving
the same purpose of describing a language, but in a form which is
very rigidly’ defined.
A formal grammar G is a quadruple Vy» Vg, P, SO, where:

V. is a finite set of terminal symbols. If the grammar generates
human language these symbols coincide more or less with the
words of the language

V s a finite set of non-terminal symbols. Sometimes they are also
referred to as variables (Hopcroft and Ullman 1969: 10). In
linguistic applications they correspond to categories. It is their
presence in the rules that allows a grammar to express general
wellformedness conditions.

P is a finite set of rules called productions. They are of the form
‘o = B’ (o rewrites as g) where both « and 4 stand for
strings of elements of Vyand V.

S is the starting symbol or root. S is an element of Vy and has
to occur at least once on the left hand side of the rewrite arrow
in the productions (in the place of «).

A grammar G generates a language L(G). There exist several different
types of grammar, depending on the form of the strings « and 4 in
the rules (i.e. exactly what elements of V.. and Vy occur in a and
2). The type of G determines the type of L(G): grammars of a certain
type generate languages of a corresponding type.

2.3 Context-free grammars

Maybe an example is called for to make all this a bit clearer. Of the
different types of grammar I pick out one, namely the kind of grammar
that is called context-free (hereafter CFG). The choice is motivated
by practical considerations. CFGs are relatively transparent and their
nature is well understood thanks to multiple applications in computer
science. On top of that they are claimed to generate a subset, arguably
all, of English and of some other languages, which should make them
useful in the context of this volume.

In a CFG the productions have to be of the form ‘A— x’ where
‘A’ is one symbol belonging to V (the set of non-terminal symbols)
and ‘a’ is a string of terminals and/or non-terminals. Here is an

6 A. De Roeck

example of a CFG:

1. Vy={S, NP, VP, N, ART, vi
V= { cat, mouse, eats, thei
P'=14S -~ NPVP

NP - Art N
VP — V NP
VP - V

V = eats
N - cat

N — mouse
Art — the}

S

The symbols in V,, respectively stand for the categories ‘Sentence’,
‘Noun Phrase’, ‘Verb Phrase’, ‘Noun’, ‘ARTicle’ and ‘Verb’. The
symbols in V.. correspond to words occuring in everyday English.
The form of tl-ll-e productions corresponds to the definition stipulated
and ‘S’, the root or axiom is present and occurs, in this case only
once, on the left hand side of a production.

The language this CFG generates consists of the following six
sentences, which happen also to be wellformed strings of English:

The cat eats the mouse.
The mouse eats the cat.
The cat eats the cat.

The mouse eats the mouse.
The cat eats.

The mouse eats.

Nowvkwbh

True enough, it was suggested earlier that the advantage, for linguists,
of using a grammar for describing language lies in its capacity of
describing infinite sets of sentences with finite means. Clearly the CFG
in the example does not exploit that possibility. The reason for this
lies in the absence of recursion in the rules — i.e. there is no rule or
sequence of rules according to which a non-terminal symbol can be
rewritten as itself. An example of such a rule would be ‘S - S NP,
where in one single rule ‘S’ can be rewritten as itself. Recursion can
also be spread over several productions, e.g. as in the sequence
‘VP — V NP, 'V — VP, where ‘VP’ rewrites as itself over two rules
distance. Nevertheless, the lack of recursion in the CFG in 1 will be
of no consequence for the utility of the example in this chapter.

Apart from generating the strings 2-7, the CFG in 1 also predicts
their underlying structures. The structure it generates for sentence 2,
for instance, is represented below under two different forms; first as
a bracketed string as in 8

8. (S(NP(An The) (ycat)) (yp(yeats) (yp(aq the) (ymouse))))

An Underview of Parsing 7

and as a iree, as in 9

9. S
A
NP VP
/\ N
ART N A% NP

| | | N
The cat eats AlllT N
the mouse

As a consequence it can be said that this grammar has strong generative
capacity.

3. RECOGNISERS

In section 2 grammars have been defined as generating schemes, finite
specifications for languages. There exists another way of specifying a
language in a finite way, namely by means of recognisers — abstract
machines which, when presented with a string of symbols will give
a yes/no answer to the question ‘Is this string a sentence of the
language I [the recogniser] know about? * (For more details see also
chapter 4 of this volume.)

A recogniser is often described as an abstract device which performs
operations on an input string, according to a given finite set of
instructions. Each of those instructions has to be mechanically executable
using a fixed amount of time and energy. This comes down to saying
that the set of instructions to a recogniser are a procedure.

An important point should be made here about the comparison
between grammars and recognisers. A grammar and a recogniser are
said to be equivalent if they respectively generate and recognise the
same language, and for each type of grammar there exists a corresponding
type of recogniser. But to say they are equivalent does not imply they
have the same characteristics. A grammar offers a static description
of a language, contained in a set of productions. Those productions
though are not mechanically executable, and they are not ordered
with respect to one another. They only give information about a
language and give no clue about how that information gets used.

The instructions to a recogniser may reflec the same linguistic
information as contained in a grammar but the machine will use it
in a dynamic way, deciding which operation to perform next when
confronted with some input at a given moment. This implies that the
actual execution of the instructions is to some extent ordered as
dictated by the input and by the instructions that were executed
before. The set of rules to a recogniser is a procedure; the set of

8 A. De Roeck

productions in a grammar is not.

4. PARSING

Consider again the sentence in 2 and its underlying structure (in 8
and 9). Although the CFG in 1 generates both, it doesn’t offer any
indication on how the link between the sentence and the structure
gets established. The sample grammar defines six sentences and six
structures but in order to decide which structure underlies example
2 the grammar is not enough. What is needed is a procedure that
will, this time, not just recognise the sentence but also discover how
it is built. The execution of that procedure is called parsing and the
thing that executes it is called a parser.

So, parsers do essentially two things. On the one hand, when
presented with a string, they have to recognise it as a sentence of the
language they can parse. In this respect, parsers have built-in recognisers.
On the other hand they have to assign to that sentence a structure
which they have to outpur. This implies that parsers must rely on
linguistic information as contained in a grammar with at least strong
generative capacity, whereas recognisers, because they do not output
structure, can be built referring to grammars with weak generative
capacity.

Parsers belong to the type of objects called transducers - ie. in
simple terms a recogniser augmented with output facilities. Just as for
recognisers, it is important to see that grammars and parsers have a
different nature, since a parser has a set of instructions which constitute
a procedure (but which can, nevertheless, use the same linguistic
information as expressed in a grammar). For the sake of both simplicity
and perspicuity, though, I will assume for the rest of this chapter that
the parsers described have access to exactly the linguistic knowledge
as expressed in the CFG of 1, and that each instruction corresponds
to what is expressed in a single grammar rule (see 13 below). In other
words, a rule ‘X — YZ’ is no longer to be read as a production but
as an abbreviation of a more complex instruction to a parser that
will use it to output a fragment of structure:

10. X
-——
Y Z

A parser usually proceeds by taking a string of symbols (the input
sentence) and applying a rule to it, which mostly comes down to
rewriting a bit of the string. For example, the string ‘ABC’ is rewritten
into the string ‘ADC’ by applying the rule ‘B — D’ (rewrite ‘B’ as
‘D’) and ‘ADC’ into ‘AdC’ according to a rule ‘D —~ d’. The strings

