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PREFACE

Yet another book on functional analysis! Yabfa!, would exclaim a computer
scientist in his or her exotic language.

Why, 20 years after the first edition of Applied Functional Analysis, after so
many other monographs on this basic topic, do I propose a second edition of
this text devoted to an introduction—an induction?—to this seductive field?

The mathematicians of my generation were lucky enough to receive as a
dowry the tools of Functional Analysis created at the dawn of our finishing
century by David Hilbert and Stefan Banach, to name just those two vision-
aries. Along with many other mathematicians, they offered us a formidable uni-
fying framework and an array of tools for solving problems stemming from
many different areas of knowledge, making a universe of a “multiverse” of
motivating applications: It is this universality of mathematical results, having
their origin in one discipline and finding applications in others, that makes func-
tional analysis in particular, and mathematics in general, so fascinating.

The success of this machinery allowed thousands of mathematicians to use it
in so many different areas that it is impossible to pursue the early Dunford-
Schwartz or the Bourbaki attempts to present an exhaustive overview of the
state of the art. Many other books then evolved in a Darwinian way: exploring
many specific and diverse directions, reflecting the experiences as well as the
views of the purpose of mathematics of each author, eventually finding an ad-
equate niche through the natural selection created by the readership.

The first edition of this book reflected my personal experience at the time,
derived from numerical analysis of partial differential equations, and later, from
mathematical economics. After two decades my views have evolved and my
experience has broadened, my teaching of functional analysis to the students of
Université Paris-Dauphine evolving year after year. I could not resist both the
pleasure and the pain of divulging to the young students what was continuously
going on, at their level, on the research front. I then felt it was time to write
down an account of some of the recent discoveries that have helped me revise
some of the perspectives I had formed earlier.

However, several pedagogical choices remain invariant: (1) convey the feel-
ing of the variety of applications; (2) keep the length of the exposition within
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reasonable limits—about 120 teaching hours—(3)—restrict the initiation to
functional analysis to the linear framework; (4) keep to the simple Hilbertian
structure, and (5) present distributions as elements of Sobolev spaces.

I shall thus be able to take a quick look at boundary-value problems for
elliptic and parabolic partial differential equations. I added a short introduction
to set-valued analysis and presented the Nagumo theorem on the viability of
closed subsets under differential equations. It is not only interesting by itself, but
allows us to forge efficient tools for rapidly and easily solving other problems,
such as boundary-value problems for systems of first-order partial differential
equations, or minimal and stopping-time problems, or building Lyapunov func-
tions. I removed the first edition’s chapter on nonlinear analysis, as well as
occasional sections or paragraphs that are no longer essential.

In order to illustrate the abstract exposition as soon as possible, I chose
applications derived from numerical analysis, systems theory, the calculus of
variations, control theory, optimization of allocations of scarce resources, de-
mography (McKendrick boundary-value problems), convex and nonsmooth
analysis, and set-valued analysis. This selection is partial and may not be to
everyone’s taste. In order to keep the time and space allocated to these exam-
ples short, I had to go so far as to sacrifice the use of weak topologies and to
deprive the reader of the grace of the weak compactness of the unit ball of the
dual of a Banach space. However, as long as the linear theory is concerned, one
can survive without it. This allows us to provide a larger number of results in the
simplest way, at the price, of course, of generality.

I hope that by doing so, I may persuade the readers of the advantages of an
abstract approach to theories motivated by concrete problems, and to attract
them to applied and motivated mathematics.

Naturally, the nature and the deep meaning of mathematical concepts and
statements evolve with time. This was the case during the course of the century
of the views on differential calculus, inherited from Pierre de Fermat, Isaac
Newton and Gottfried Leibniz three centuries ago, and formalized when a little
more than a century ago Augustin-Louis Cauchy defined rigorously the concept
of limit. The consensus on the formalization of derivatives as limits of differ-
ence quotients for the pointwise convergence was so strong that the concept of
derivative became a permanent reality, protected from any dissenting view.
This could have been the case in this kind of paradise in which one is free to
choose the assumptions and the rules of the game. The overwhelming curiosity
and the concern for interpreting the environment with the help of mathematical
metaphors was Eve’s apple. Are all problems arising outside pure mathematics
“well-posed” in the Hadamard sense? Should the nondifferentiable functions
popping up in so many fields be deprived forever of the benefits of some prop-
erties of the derivatives?

Since then, the history of the derivatives of functions and maps has been a
kind of mathematical striptease, the modern version of what Parmenides and
the pre-Socratic Greeks called a-letheia, the dis-covering, un-veiling of the
world that surrounds us. This is nothing else than the drive to “abstraction,”
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isolating, in a given perspective, the relevant information in each concept and
investigating the interplay between them.

Indeed, one by one, and very shyly, the required properties of the derivative
of a function or of a functional were taken away. We shall go quite far to leave
the derivatives with the bare minimum.

This is quite natural, though, because each problem demands its own
amount of properties that the derivative should enjoy (i.e., its own degree of
regularity). Without going too far by always requiring minimal assumptions,
some problems could not be solved by sticking to the richest structure. The
right balance between generality and readability is naturally a subjective choice.

The concepts of the derivatives of functionals go back to Volterra in 1887.
Then Gateaux, in a note written in 1913 and published in 1919 after his
death during the First World War, introduced the concept of first variation:
If f:R"— R™ denotes a map from one finite dimensional vector space to
another, and

_ S+ ) — 1)

Vil ()(0) : ;

denotes its differential quotients, the first variation of f at x in the direction v is
the limit Df(x)(v) of these differential quotients when it exists. In defining
the Gdteaux derivative D f(x), Fréchet added the requirement that the map
v— Df(x)(v) is linear and continuous! He proposed his own concept of the
derivatives (with the mandatory linearity) of a function as early as in 1912 in
the case of functions, and in 1925 for maps from one normed space to another.
Mathematicians of this period still insisted that the derivatives of functionals
have many properties, and were not ready to give away linearity.

These definitions were too restrictive, so that they were weakened in several
ways, and led to a ménagerie of concepts: strong or weak Fréchet and Gateaux
derivatives; Hadamard, bounded (Suchomlinov), locally uniform (Vainberg)
derivatives; Dini directional semiderivatives; or derivatives from the right, to
give a few.

This was not enough, however, as the topologies used to define the limits of
the difference quotients were still too strong to allow more maps to retain some
kind of differentiability. But weakening the topologies allows us to get more
limits at the price of obtaining these limits outside the set of single-valued maps.
This was even worse than loosening the linearity condition for the directional
derivatives.

However, in the 1940s, Serge Sobolev and Laurent Scwhartz dared to in-
troduce weak derivatives and distributions to obtain solutions to partial differ-
ential equations; just as in the 1960s, Jean-Jacques Moreau and Terry Rock-
afellar defined set-valued subdifferential of convex functions to implement the
Fermat rule in optimization; while the 1980s witnessed the emergence of
graphical derivatives of set-valued maps and set-valued analysis for dealing, for
instance, with control systems and differential games; and the 1990s saw the
appearance of mutations of set-valued maps for grasping kind of diffcrential
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equation—called a mutational equation—that govern the evolution of sets and
devise a differential calculus in metric spaces. This process of differentiating
“less and less differentiable maps,” so to speak, continues its random course in
a nonteleological way.

To briefly elaborate this point: the strong requirement of pointwise con-
vergence of differential quotients can be weakened in (at least) two ways, each
sacrificing different groups of properties of the usual derivatives:

* Fix the direction v and take the limit of the function x +— V, f (x)(v) in the
weaker sense of distributions, to be defined later in this book. The limit
D, f may then be a distribution, and no longer a single-value map. How-
ever, it coincides with the usual limit when f is Gateaux differentiable.
Moreover, one can define the difference quotients of distributions, take
their limit, and thus differentiate distributions.

Distributions, as we shall see, are no longer functions or maps defined
on R”, so they lose the pointwise character of functions and maps, while
retaining the linearity of the operator f +— D, f, which is mandatory for
using the theory of linear operators for solving partial differential equa-
tions.

* Fix the direction x and take the limit of the function v — V, f(x)(v) in the
weaker sense of “graphical convergence,” to be defined later in this book.
The limit Df(x) may then be a set-valued map, and no longer a single-
valued map. However, it coincides with the usual limit when fis Giteaux
differentiable. Moreover, one can define the difference quotients of set-
valued maps, take their limit, and thus differentiate them. These graphical
derivatives retain the pointwise character of functions and maps, which is
mandatory for implementing the Fermat Rule, proving inverse function
theorems under constraints, or using Lyapunov functions, for instance, but
lose the linearity of the map f +— Df(x).

In both cases, the approaches are similar: they use (different) conver-
gences weaker than the pointwise convergence to increase the possibility of the
difference-quotients to converge. But the price to pay is the loss of some proper-
ties by passing to these weaker limits (the pointwise character for distributional
derivatives, the linearity of the differential operator for graphical derivatives).

We shall use both of them to study boundary value-problems for partial
differential equations, the second approach being for instance involved in the
definition of set-valued solutions (with shocks) of systems of first-order partial
differential equations and of the viscosity solutions to Hamilton-Jacobi varia-
tional equations and inequalities.

JEAN-PIERRE AUBIN

Paris, France
October 1999
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INTRODUCTION: A GUIDE
TO THE READER

This book requires the reader only to have mastered the fundamental notions of
topology in metric spaces and vector spaces and is otherwise self-contained. In
order to help the reader, the main results are grouped at the end of the book in
the hope of providing a concise résumé of what is essential. About two hundred
exercises provide the means of applying the results that have been attained and
of sorting out the ones that are most often used. The contents of the following
chapters are summarized here. However, since most of the terms are not pre-
cisely defined in this introduction, this description serves simply as a guide for
placing the results in their general context.

This book can be divided into three parts. The first, consisting of Chapters 1
to 5, presents the fundamental abstract results of linear functional analysis.
After recalling some basic results, Chapter 1 is devoted to the theory of pro-
jectors, which is the basis of those results specific to Hilbert spaces. The second
chapter deals with separation theorems for convex sets. We give applications
immediately: the existence of a Lagrange multiplier in optimization theory, the
Von Neumann minimax theorem, the characterization of Pareto optima to
n-person games. Duality and transposition of continuous linear operators are
treated in Chapter 3. The theorems of Lax-Milgram and of Lions-Stampacchia
on the existence of variational equations and inequalities are proved. The fun-
damental properties of continuous linear operators are studied in Chapter 4.
Finally Chapter 5 is devoted to methods of construction of Hilbert spaces. In
Chapter 5, Section 4, we establish the general method of constructing Sobolev
spaces.

In Chapters 6, 7, 8, and 9, which make up the second part of the text, we
study concrete examples of Hilbert spaces (spaces of square summable func-
tions and Sobolev spaces of functions and distributions) and operators funda-
mental in analysis (differential operators, convolution operators, and Fourier
transforms). Chapter 8 deals with some methods of approximation of functions.

The contents of the last part of the book are disparate. Chapter 10 intro-

.



