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Preface

This book is a monograph of a significant and recent publications in non-linear
analysis involving set-valued mappings. A map T : X — 2V is said to be a set-
valued mapping if for each z € X, T'(z) C Y.

We need analysis, topology and geometry, i.e., a mixture of these three fields, in
studying the theory of set-valued mappings. There have been a significant number
of publiactions in this area of research over the last 40 years. These have become
possible because there are huge applications in the fileds of Physics, Biology, Control
Theory, Optimization, Economics and Game Theory.

We shall cover the following topics in this book: contraction mappings, fixed
point theorems, minimax inequalities, end points, variational inequalities, general-
ized variational inequalities, and generalized quasi-variational inequalities, equilib-
rium analysis in economics, best approximation and fixed point theorems, topolog-
ical degree theory,and non-expansive types of mappings and fixed point theorems.

In Chapter 5, we shall present variational inequalities, quasi-variational equali-
ties and equilibrium analysis in economics. We have applied the topological meth-
ods to study the equilibrium analysis in economics. We shall discuss them in more
details in the Introduction Chapter. In Chapter 6, we shall discuss best approxima-
tion and fixed point theorems for set-valued mappings in topological vector spaces.
Finally, in Chapters 7 and 8 we shall present some aspects of degree theories for
set-valued mappings and non-expansive types of mappings and fixed point theorems
in locally convex topological vector spaces.

We are very much grateful to Professor Dr. Ken Smith at the Dept. of Math-
ematics of the University of Queensland for his tremendous help in making this
publication possible by compiling the manuscript into Latex format. We are also
thankful to Dr. Bevan Thompson of the same department for all his administrative
help and encouragement in completing this project.

After the sudden and unfortunate death of Dr. Enayet Tarafdar in November,
2002, I continued with the project and tried to finish it with the help of my other
friends and well wishers who were working in this area of research. In this direction,
I would like to mention the names of Dr. George Yuan and Dr. Peter Watson who
tried to help me in finishing this project with their valuable suggestons and inputs.
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Chapter 1

Introduction

Our main objective in this book is to study some aspects of non-linear analysis
which involve set-valued mappings. However, a single valued mapping 7: X — Y
of a non-empty set X into a non-empty set Y can be regarded as a set-valued
mapping by considering one point {T'(z)} for each each z € X.

The various aspects of fixed points, minimax inequalities, end points, variational
inequalities, generalized variational inequalities, and generalized quasi-variational
inequalities, equilibrium analysis in economics, best approximation and fixed point
theorems, topological degree theory,and non-expansive types of mappings and fixed
point theorems, and related topics are considered in this book.

It is well known that fixed point theory is very important in mathematics. The
close relationship between fixed point theory and mathematical economics can be
illustrated in many ways. The usefullness of Brouwer’s fixed point theorem was
recognized by John Von Neumann when he developed the foundations of game
theory in 1928.

Fixed point and coincedence theorems for set-valued mappings and their ap-
plications to minimax theorems and economics originated from the works of John
Von Neumann (Neumann (1937)) (see also Neumann (1928b), Neumann (1928a),
Neumann and Morgenstern (1944) and Neumann and Morgenstern (1947)). Then
the theory was advanced by Kakutani (1941), Fan (1952) and others (see Zeidler’s
book (Zeidler (1985))).

In most of the economic papers appearing in any journals of economics, one
can find the terms economic equilibria, Pareto optimum in abundance. Pareto
talked about the optimum which has come to be known popularly as Pareto Op-
timum (Pareto allocation). In the last century, new discipline called mathematical
economics — has evolved into a highly developed and fast growing branch of math-
ematics blended with the components of economy, games, econometrics, psychology
and many related areas.

In fact, in a fascinating article Franklin (1983) (incidentally has a book, see
Franklin (1980)) wrote: In 1969 a spokesman for the Nobel foundation welcomed
the new prize subject, economics, as “the oldest of the arts, the youngest of the
sciences”. It might be fair to say that economics became a science when it started
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making significant use of mathematics.

In this book, we have applied the topological methods to study the equilibrium
analysis in economics, i.e., to prove the existence of equilibrium of social economics.
It seems that in this area nothing dominates more significantly than fixed point
theory of set-valued mappings. In fact, Nobel laureate Debreu (1959) proved two
fundamental theorems of mathematical economics by using Kakutani’s fixed point
theorem.

Let E be a topological vector space and A a non-empty subset of E. If S, T :
A — 2F are correspondences, then TN S : A — 2F is a correspondences defined by
(TN S)(z) =T(z)NS(z) for each z € A.

Ding, Kim and Tan introduced the notions of correspondences of class L3, L3-
majorant of ¢ at z and L}- majorized correspondences in Ding, Kim, and Tan
(1992) as follows:

Let X be a topological space, Y be a non-empty subset of a vector space E, 0 :
X — E be amap and ¢ : X — 2Y be a correspondence. Then (1) ¢ is said to be of
class £j if for every z € X, con¢(z) C Y and 6(z) ¢ cong(x) and for each y € Y,
#-1(y) = {x € X : y € ¢(z)} is open in X; (2) a correspondence ¢, : X — 2V
is said to be an L£j majorant of ¢ at z if there exists an open neighborhood N,
of z in X such that (a) for each z € N, ¢(z) C ¢.(2)) and 0(2) ¢ conp.(z) (b)
for each z € X, con¢,,(2) C Y and (c) for each y € Y, ¢1(y) is open in X; (3) ¢
is Lj-majorized if for each € X with ¢(z) # 0, there exists an L£}-majorant of ¢
at .

In view of Yannelis and Prabhakar (1983, p. 239, Lemma 5.1), Ding, Kim and
Tan’s notions of the correspondence ¢ being of class L} or £}-majorized generalize
the notions ¢ € C(X,),0) or C-majorized respectively which were introduced by
Tulcea (1986, p. 2). Ding, Kim and Tan pointed out that their map 8 : X — E'is
less restrictive than that of [Tulcea (1986)], where  : X — Y. In most applications,
either (I) X and Y are non-empty subsets of the same topological vector space E
and 6(z) = z for all z € X, or (II) X = II;,—;X; and 6(z) = m;(z) for all z € X,
where m; : X — X; is the projection of X onto X; and X; and Y are non-empty
subsets of the same topological vector space E.

Ding, Kim and Tan observed that when X =Y and is convex (and é(z) = z
for all z € X), the notion of correspondence of class L} coincides with the notion
of correspondence of class £ introduced by [Yannelis and Prabhakar (1983)] and
the notions of L£j-majorant of ¢ at  and L£}-majorized correspondence generalize
the notions of £-majorant of ¢ at z and £-majorized correspondence respectively
also introduced by [Yannelis and Prabhakar (1983)]. In the special case (I), where
6 = 1, , the identity map on X or (II), where § = 7;, £* is written in place of L
if there is no ambiguity.

It should be noted that if ¢ is Lo*-majorized, then for z € X,0(z) ¢ cong(z)
and con¢g(z) C Y.

Let I be a (possibly infinite) set of agents. For each agent ¢ € I, let its choice
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set or strategy set X; be a non-empty set in a topological vector space. Let X =
ILier Xy If i € I, let m; : X — X; be the projection of X onto X and for z € X,
let z; denote the projection m;(z) of z on X;. Let P; : X — 2% be an irreflerive
preference correspondence, i.e., z; ¢ P;(z) for all z € X. Following [Gale and Mas-
Colell (1978)], the collection (X;, P;)icr will be called a qualitative game. A point
% € X is said to be an equilibrium of that game if P;(2) = 0 for all i € I. For each
i € I, let A; be a non-empty subset of X; if ¢ € I is arbitrarily fixed, we define

Hj#[yjeiA[ ® A = {:L‘ = (-’l'k)kel € X :xp € Ay, for each k € I}

Let I be a (finite or an infinite) set of agents. An abstract economy I' =
(Xi, Ai, By, Pi)ic is defined as a family of ordered quadruples (X;, A;, B;, P;), where
X is a topological space, A; : ;1 X; — 2% and B;Il;e1 X; — 2%¢ are constraint
correspondences and P;ILjc;X; — 2% is a preference correspondence. An equilib-
riumn for I' is a point £ € X = Il X; such that for each i € I,2; € clB;(Z) and
Ai(2) N Pi(z2) = 0. When A; = B; for each i € I, our definitions of an abstract
economy and an equilibrium coincide with the standard definitions; e.g., in Borglin
and Keiding (1976, p. 315), or in Yannelis and Prabhakar (1983, p. 242).

In the following chapters, if E is a topological vector space, we shall denote the
dual space of E, i.e. the vector space of all continuous linear functionals on E, by
E* and the pairing between E* and E by (w, z) for each w € E* and = € E, and by
Re(w, x) the real part of the pairing between w € E* and z € E. Unless otherwise
stated, if A is a subset of E, we shall denote by 24 the family of all non-empty
subsets A and by clA the closure in E, and by coA, the convex hull of A. Also, we
shall denote by F(A) the family of all non-empty finite subsets of 4, by R the set
of all real numbers and R* = {r € R: r > 0}.

Let E be a topological vector space. For each zy € E, each non-empty subset
A of E and each € > 0, let W(xzo;¢) := {y € E* : |(y,20)| < €} and U(4;e) :=
{y € E* : sup,c 4 [(y,z)| < €}. Let 0(E*, E) be the topology on E* generated by
the family {W (z;¢€) : € E and € > 0} as a sub-base for the neighbourhood system
at 0 and §(E*, E) be the topology on E* generated by the family {U(45¢) : A is
a non-empty bounded subset of E and € > 0} as a base for the neighbourhood
system at 0. We note that E*, when equipped with the topology o(E*, E) or the
topology 6(E*, E), becomes a locally convex Hausdorff topological vector space.
Furthermore, for a net {ya}aer in E* and for y € E*, (i) yo — y in o(E*, E) if
and only if (ya,z) — (y,z) for each z € E and (ii) yo — y in §(E*, E) if and
only if (ya, ) — (y,z) uniformly for € A for each non-empty bounded subset A
of E. The topology o(E*, E) (respectively, §(E*, E)) is called the weak* topology
(respectively, the strong topology) on E*. If p € E, p is the linear functional on E*
defined by p(f) = f(p) for each f € E*.

Let X be a non-empty subset of E. Then X is a cone in E if X is convex and
AX C X forall A > 0. If X is a cone in E, then X = {w € E* : Re(w,z) >
0 for all z € X} is also a cone in E*, called the dual cone of X.



4 Topological Methods of Set-Valued Nonlinear Analysis

We shall now state a result of S. C. Fang (e.g. see [Chan and Pang (1982)] and
[Shih and Tan (1986), p. 59]) with a little modification, as follows, made in Lemma

2.4.2 in Tan (1994):

Lemma 1.1 Let X be a cone in a Hausdorff topological vector space E and
T :X — 2F" be a map. Then the following statements are equivalent:
(a) There exist § € X and @ € T(J) such that Re(w,§ —x) < 0 for all z € X.
(b) There ezist § € X and & € T(§) such that Re(,§) =0 and w € X.

Let y € E. Then the inward set of y with respect to X is the set Ix(y) = {z €
E:z=vy+r(u—uy) for some u € X and r > 0}. We shall denote by Ix(y) the
closure of Ix(y) in E.

Let X and Y be topological spaces and T : X — 2Y. Then T is said to be:

upper (respectively, lower) semicontinuous at zg € X [Berge (1963), p. 109] if for
each open set G in Y with T'(z¢) C G (respectively, T'(zo) N G # (), there exists an
open neighbourhood U of zg in X such that T(z) C G (respectively, T(z) NG # ()
for all z € U,

upper (respectively, lower) semicontinuous on X if T is upper (respectively,
lower) semicontinuous at each point of X.

Moreover, T is said to be continuous on X if it is both upper semi-continuous

and lower semi-continuous on X.
Let X be a non-empty subset of E and T : X — 2E". Then T is said to be:

(i) monotone (on X)[Browder (1976), p. 79] if for each z,y € X, each u € T(z)
and each w € T'(y), Re(w —u,y — z) > 0;

(73) semi-monotone [Bae, Kim, and Tan (1993), pp. 236-237] (on X) if for each
z,y € X, infyuer(s) Re(u,y — z) < infyep(y) Re(w,y — ).

It is clear that if T is monotone, then T is semi-monotone. The converse is in
general false, see Example 2 in [Bae et al. (1993)].

A real-valued function % : X — R defined on a convex subset X of E is said to
be quasi-concave if for every real number o the set {z € X : ¢(z) > a} is convex.

If X is a topological space and {U, : @ € A} is an open cover for X, then
a partition of unity subordinated to the open cover {U, : & € A} is a family
Ba : o € A} of continuous real-valued functions B, : X — [0, 1] such that

(1) Ba(y) =0 for all y € X\U,,

(2) {support B, : @ € A} is locally finite and

(3) XacaBua(y) =1 for each y € X.

Let X be a non-empty subset of a topological vector space F and T : X — 2E" be
a map. Then the generalized variational inequality problem associated with X and
T is to find § € X such that generalized variational inequality SUp,,er(y) Re(w, § —
z) < 0forallz € X holds, or to find § € X and @ € T(§) such that Re(w, j—=z) < 0
for all z € X holds. When T is single-valued, a generalized variational inequality
is called a variational inequality. Browder (1965b) and Hartman and Stampacchia



