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Preface

The refinement of experimental techniques has greatly stimulated progress in
quantum optics. Understanding of the quantum nature of matter and light has
been significantly widened and new insights have been gained. A number of
fundamental predictions arising from the concepts of quantum physics have
been proved by means of optical methods.

In our book Quantum Optics, which arose from lectures that we have given
for many years in Jena, Giistrow and Rostock, an attempt is made to develop
the theoretical concepts of modern quantum optics, with emphasis on cur-
rent research trends. It is based on our book, Lectures on Quantum Optics
(Akademie Verlag/VCH Publishers, Berlin/New York, 1994) and its revised
and enlarged second edition, Quantum Optics — An Introduction (Wiley-VCH,
Berlin, 2001), which we wrote together with S. Wallentowitz. Taking into ac-
count representative developments in the field, in the second edition we have
included new topics such as quantization of radiation in dispersing and ab-
sorbing media, quantum-state measurement and reconstruction, and quan-
tized motion of laser-driven trapped atoms. Following this line, in the present
edition we have again included new topics. The new Chapter 10 is devoted
to medium-assisted electromagnetic vacuum effects, with special emphasis
on spontaneous emission and van der Waals and Casimir forces. In the sub-
stantially revised and extended Chapter 8, a unified concept of measurement-
based nonclassicality and entanglement criteria for bosonic systems is pre-
sented. The new measurement principles needed in this context are explained
in Chapter 6. Two sections are added to Chapter 9 in which the problem of un-
wanted losses in quantum-state extraction from leaky optical cavities is stud-
ied. A consideration of decoherence effects in the motion of trapped atoms is
added to Chapter 13.

Quantum Optics should be useful for graduate students in physics as well
as for research workers who want to become familiar with the ideas of quan-
tum optics. A basic knowledge of quantum mechanics, electrodynamics and
classical statistics is assumed.
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1
Introduction

Since the first experimental demonstration of nonclassical light in 1977, quan-
tum optics has been a very rapidly developing and growing field of modern
physics. There are a number of books on the subject [e.g., Agarwal (1974);
Allen and Eberly (1975); Carmichael (1993, 1998); Cohen-Tannoudji, Dupont-
Roc and Grynberg (1989, 1992); Gardiner (1991); Gerry and Knight (2004);
Haken (1985); Klauder and Sudarshan (1968); Loudon (1983); Louisell (1973);
Mandel and Wolf (1995); Meystre and Sargent (1990); Orszag (2000); Pefina
(1985, 1991); Schleich (2001); Scully and Zubairy (1997); Shore (1990); Vogel
and Welsch (1994); Vogel, Welsch and Wallentowitz (2001); Walls and Milburn
(1994)], and it is covered in many journals.! Presently, in one journal alone
(Physical Review A) hundreds of articles on a broad spectrum of quantum-
optical and related topics appear every year. Moreover, there are close con-
nections to other traditional fields, such as nonlinear optics, laser spectroscopy
and optoelectronics, and the boundaries have often been flexible. The recent
improvements in experimental techniques allow one to control the quantum
states of various systems with increasing precision. These possibilities have
also stimulated the development of rapidly increasing new fields of research
such as atom optics and quantum information.

The aim of this book is to describe the fundamentals of quantum optics,
and to introduce the basic theoretical concepts to a depth sufficient to apply
them practically and to understand and treat specialized problems which have
arisen in recent research. On the basis of a general quantum-field-theoretical
approach, important topics are presented in a unified manner. Keeping in
mind that any real light field is due to sources, time-dependent commutation
rules are considered carefully. Nonclassical light is studied and a detailed
analysis of measurement schemes is given, including the effect of passive op-
tical instruments, such as beam splitters, spectral filters and leaky cavities.
From this background, the basic concepts are developed that allow one to de-

1) For example, see Europhysics Letters, European Physical Journal D,
Journal of Modern Optics, Journal of Optics B, Journal of Physics
A and B, Journal of the Optical Society of America B, Nature, Op-
tics Communications, Optics Letters, Physical Review A, Physical
Review Letters, Physics Letters A, Science.
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termine the quantum states of various systems from measured data. Meth-
ods of quantum-state preparation are outlined for particular systems, such as
propagating light fields, cavity fields and the quantized motion of a trapped
atom.

Any attempt to give a complete overview on the present state of the field,
together with a complete list of references, would be a hopeless venture. We
have therefore decided to refer to selected work that may be useful in the
context of particular topics, with special emphasis on textbooks, review ar-
ticles and research-stimulating original articles. Before giving a guide to the
topics covered, we mention two important fields that, apart from some ba-
sic ideas, are not considered, although they are closely related to quantum
optics. These are the large fields of nonlinear optics [see, e. g., Bloembergen
(1965); Boyd (1991); Pefina (1991); Schubert and Wilhelmi (1986); Shen (1984)]
and laser physics and laser spectroscopy [see, e. g., Sargent, Scully and Lamb
(1977); Haken (1970); Levenson and Kano (1988); Milonni and Eberly (1988);
Stenholm (1984)].

1.1
From Einstein’s hypothesis to photon anti-bunching

At the beginning of the last century, one of the unresolved problems in physics
was the photoelectric effect. When light falls on a metallic surface, photoelec-
trons may be ejected (Fig. 1.1), whose energy is insensitive to the intensity,

o«
W\
’\

hw /

Fig. 1.1 Photoelectric effect: light of frequency w falls on a metallic
plate (MP) and ejects electrons (e ).

MP

but increases with the frequency of the incident light. This result is obviously
in contradiction to the concepts of classical physics. From a classical point of
view, one would expect the energy of the emitted electrons to increase with
the light intensity. Einstein’s explanation of the photoelectric effect in 1905,



1.1 From Einstein’s hypothesis to photon anti-bunching | 3

by postulating the existence of light quanta, photons, may be regarded as the
birth of quantum optics. He assumed that light is composed of quanta of en-

ergy
E = hw (1.1)

and momentum

p = hk= /]—\1 (1.2)

In this way, quantities that typically describe the wave aspects of light are

related to those that describe particle aspects with the “coupling constant” be-

tween wave and particle features being given by the Planck constant /i. Hence

the kinetic energy of an emitted electron, Ey;,, is given by the difference be-

tween the energy of the absorbed photon, fiw, and the binding energy of the
electron in the metal, Ey:

Eyin=hw — Ey, (1.3)

which implies that, in agreement with observations, the energy of the pho-
toelectrons increases with the frequency of the incident light. Increasing the
intensity of the light corresponds to increasing the number of light quanta
falling on the metal surface, which gives rise to an increasing number of pho-
toelectrons.

The photoelectric effect plays an important role in the photoelectric detec-
tion of light, the theory of which (Chapter 6) was developed at the end of the
1950s for classical radiation and extended to quantized radiation in the 1960s.
Its experimental application has led to a deeper understanding of the statistics
of light.

The invention of the laser at the beginning of the 1960s allowed qualita-
tively new developments in optical research and the growth of new fields
such as nonlinear optics and laser spectroscopy. Intensive studies of lasers
have stimulated the introduction of a series of basic theoretical concepts in
quantum optics: coherent states (Chapter 3), the theory of phase-space func-
tions (Chapter 4) and the quantum theory of damping (Chapter 5).

Modern quantum optics would be unthinkable without the availability
of measurement techniques, such as the Hanbury Brown-Twiss experiment,
which was first performed in 1956. By using a beam splitter and two pho-
todetectors, the coincidences of photoelectric events were recorded and com-
pared with the product of independently measured events (for the experimen-
tal setup see Fig. 8.1, p. 271). In the case of thermal light an excess of coinci-
dences was observed. That is, the measured intensity correlation G(?)(7) as a
function of the time delay 7, decays from its initial value at T =0 towards a
stationary value, cf. Fig. 1.2. This effect, which is called photon bunching, can



4

1 Introduction

G(z)(r)

T

Fig. 1.2 Delay-time dependence of the intensity correlation as typically
observed in a Hanbury Brown—-Twiss experiment performed with light
from a thermal source.

be understood by assuming that the light quanta arrive in bunches, so that the
joint probability of events exceeds the product of the two probabilities mea-
sured independently of each other. Although this explanation is reasonable,
it affords no proof of the existence of photons, since an intensity correlation
behavior of the type observed can also be understood classically. It should
be emphasized that, in the opposite case, where the measured intensity corre-
lation has a positive initial slope (photon anti-bunching) there is no classical
explanation (Chapter 8).

Notwithstanding the success of Einstein’s hypothesis, the existence of pho-
tons was still a matter of discussion in the 1970s,? and the demonstration of
photon anti-bunching in 1977 may be regarded as the first direct proof of their
existence. The experimental apparatus was of the Hanbury Brown-Twiss type
and the detected light was the resonance fluorescence (Chapter 11) from an
atomic beam with such a low mean number of atoms that at most one atom
contributed to the emitted light. Let us suppose that at a certain instant a
single two-level atom that is (resonantly) driven by a laser pump is in the up-
per quantum state and ready to emit a photon. If the atom emits a photon,
it undergoes a transition from the upper to the lower quantum state, which
implies that it cannot emit a second photon simultaneously with the first one.
The atom can emit a second photon only when it is again excited by the pump
field. In other words, the measured intensity correlation vanishes for zero
delay, G(z)(r —0) =0, and in the detection scheme considered there are no
equal-time coincidences of photoelectric events. Note that any classical wave
or wavepacket is divided by a 50%:50% beam splitter into two parts of equal
intensity, which never leads to a vanishing intensity correlation at zero time
delay. Photon anti-bunching is essentially a nonclassical property of light and
its detection stimulated the formation of quantum optics as a specific field of
research.

2) See, e. g, the paper by Karp (1976), “Test for the non-existence of

photons”, and the response by Mandel (1977), “Photoelectric count-
ing measurements as-a test for the existence of photons”.



