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Preface

This issue of the journal reports regular papers. The first contribution is by Falko
Dressler and discusses self-organizing mechanisms in computer networks. The
second contribution is by Preetam Ghosh, Samik Ghosh, Kalyan Basu and Sa-
jal K. Das and deals with a stochastic event based simulation technique to esti-
mate protein-ligand docking time. The third contribution is by Morteza Analoui
and Shahram Jamali, and it deals with the interpretation of the Internet as a
biological environment to study congestion phenomena. The fourth contribution
is by Corrado Priami and it discusses how computational thinking in biology
can be implemented through the use of process calculi. The last contribution
is by Peter Saffrey, Ofer Margoninski, James Hetherington, Marta Varela-Rey,
Sachie Yamaji, Anthony Finkelstein, David Bogle and Anne Warner and it deals
with management information systems in biology. Finally we publish a corrected
version of a paper by Ruet and Remy published in the previous volume of the
journal.

July 2007 Corrado Priami
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Bio-inspired Network-Centric Operation and
Control for Sensor/Actuator Networks

Falko Dressler

Autonomic Networking Group, Dept. of Computer Science 7,
University of Erlangen-Nuremberg, Germany
dresslerQinformatik.uni-erlangen.de,
http://wwu7.informatik.uni-erlangen.de/~dressler/

Abstract. Self-organization mechanisms have been investigated and de-
veloped to efficiently operate networked embedded systems. Special focus
was given to wireless sensor networks (WSN) and sensor/actuator net-
works (SANET). Looking at the most pressing issues in such networks,
the limited resources and the huge amount of interoperating nodes, the
proposed solutions primarily intend to solve the scalability problems by
reducing the overhead in data communication. Well-known examples are
data-centric routing approaches and probabilistic techniques. In this pa-
per, we intend to go one step further. We are about to also move the
operation and control for WSN and SANET into the network. Inspired
by the operation of complex biological systems such as the cellular infor-
mation exchange, we propose a network-centric approach. Our method
is based on three concepts: data-centric operation, specific reaction on
received data, and simple local behavior control using a policy-based
state machine. In summary, these mechanisms lead to an emergent sys-
tem behavior that allows to control the operation of even large-scale
sensor/actuator networks.

1 Introduction

In the communications area, there is a strong research focus on networked embed-
ded systems because of their broad diversity in application domains. Especially,
wireless sensor networks (WSN) have become popular for many applications.
Similarly, there is a growing demand for sensor/actuator networks (SANET).
Sensor networks are composed of numerous small, independently operating
sensor nodes [1]. Such sensors nodes are self-contained units consisting of a bat-
tery, radio communication, sensors, and some minimal amount of on board com-
puting power. While the application scenarios are manifold [2], the operation
of such WSNs is still challenging [3], basically due to the limited resources in
terms of CPU power, storage, and, first of all, energy [4]. Within a WSN, nodes
are thought to be deployed, to adapt to the environment, and to transmit data
among themselves and/or to a given base station. The research topics include
efficient communication in terms of resource consumption, reliability, and scal-
ability [2,5]. Because sensor nodes are usually battery operated, many efforts

C. Priami (Ed.): Trans. on Comput. Syst. Biol. VIII, LNBI 4780, pp. 1-13, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 F. Dressler

have been made to develop energy-efficient algorithms and protocols for com-
munication in WSNs [6].

Usually, WSNs are thought to be dynamic in terms of the current availabil-
ity, i.e. they care about the potential removal and addition of sensor nodes. Dy-
namics in terms of mobility is concerned in sensor/actuator networks. Basically,
SANETS consist of sensor networks that are enhanced by additional actuation
facilities [3]. In most application scenarios, mobile robot systems are used as actu-
ation facilities [7]. Nevertheless, we concentrate on general purpose actuation con-
trolled by measures from corresponding sensor nodes. Therefore, the same network
infrastructure is used for actuation control as well as for sensor data collection.

There are many application scenarios for WSNs and SANETSs. The most pop-
ular examples include the service as first responders in emergency situations [8]
and the supervision and control of challenging environments such as the moni-
toring of animals [9].

Operation and control of such networks is one of the most challenging is-
sues. Typically, a central control loop is employed consisting of the following
actions: measurement, transmission to a base station, (external) analysis, trans-
mission to the actuation devices, actuation. Besides the increased network load,
severe delays might be introduced. Driven by the limited resources, mechanisms
for network self-organization have been proposed for higher scalability. Most
of these approaches focus on efficient communication in WSNs, e.g. directed
diffusion as a data-centric communication paradigm [10], and on stateless task
allocation in SANETS [11]. Similar issues have been addressed in the artificial
intelligence domain. Agent-based systems have been developed that enable an
efficient distributed control in uncertain environments [12]. Nevertheless, there
are still many unsolved issues such as predictability of an action, reliability of
the communication, and boundaries for response times.

In this paper, we present and discuss an approach for network-centric op-
eration and control in WSNs and SANETSs that prevents the necessity of the
described control loop or reduces the loop to a few neighboring nodes within
the network, respectively. Inspired by the information handling in cell biology,
we have built a rule-based system that allows to achieve all decisions within the
network itself. There is no external control required. Nevertheless, we propose to
allow such external intelligence for the handling of unexpected situations. The
adaptive rule system has the inherent property of being self-learning by induc-
ing new rules that match previously unknown situations. Therefore, our method
provides at least limited control in a system showing an emergent behavior.

The network-centric control system allows to operate even in scenarios with
the following challenging properties:

— Mobility of nodes — commonly it is believed that sensor networks being
stationary, nowadays, mobility is a mayor concern

Size of the network — much larger than in a infrastructure networks
Density of deployment — very high, application domain dependent

Energy constraints — much more stringent than in fixed or cellular networks,
in certain cases the recharging of the energy source is impossible

|
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The main contributions of the paper can be summarized as follows. An ap-
proach is presented that features localized data analysis and diffuse communica-
tion of measurement and computation results based on the content of the infor-
mation instead of topology information and central management. We adapted
signaling pathways known from cell biology to achieve an emergent behavior of
the addressed complex system consisting of sensors and actuators. Using simple
rules that are pre-programmed into network nodes, the network becomes able
to solve aggregation or decision problems without having a global view to the
behavior of the entire system.

The rest of the paper is organized as follows. Section 2 depicts the shifting
paradigms to network-centric operation and control in massively distributed sen-
sor/actuator networks. In section 3, the rule-based state machine for localized
actuation control is explained. This description is followed by a discussion in
section 4 and a conclusion in section 5.

2 Shifting Paradigms: Network-Centric Operation and
Control

The objective of this paper is to discuss the potentials of network-centric con-
trol and operation in sensor/actuator networks. We developed a scheme based
on three principles: data-centric operation, specific reaction on received data,
and simple local behavior control using a policy-based state machine. We start
with a high-level motivation for the presented approach, followed by a detailed
description of the involved algorithms, and a discussion that is meant to be a
starting point for further contemplation.

2.1 Need for Network-Centric Control

The coordination and control of sensor/actuator networks is still an emerging
research area. Sensor networks have been enhanced by mobile robots. The re-
sulting system is continuously examining the environment using sensors (mea-
surement). The measurement data is transmitted to a (more or less) central
system for further processing, e.g. optimizations using global state information.
Then, the actuators are controlled by explicit commands that are finally exe-
cuted (actuation). Basically, this scheme is usually used because the involved
components (sensors, actuators) do not have resources that allow to cover the
global state. The scheme is depicted in figure 1 (left). The measurement and the
control loop are shown by corresponding arrows. Obviously, long transmission
distances have to be bridged leading to unnecessarily high transmission delays
as well as to a questionable communication overhead in the network, i.e. possible
network congestion and energy wastage.

The favored behavior is shown in figure 1 (right). Self-organization methodolo-
gies are used to provide a network-centric actuation control, i.e. a processing of
measurement data within the network and a direct interaction with associated,
i.e. co-located actuators. How can we build a system that behaves in this fashion
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Fig. 1. Operation and control of a SANET: centralized (left), network-centric (right)

and that shows the desired emergent behavior? We tried to adapt mechanisms
as known from cell biology as described in the next section. The result is a data-
centric message forwarding, aggregation, and processing. The key requirements
can be summarized as follows:

— Self-organized operation without central control

— Allowance for centralized ”helpers” and self-learning properties
— Reduced network utilization

— Accelerated response, i.e. in-time actuation

2.2 An Excursion to Nature - Cellular Signaling Pathways

The turn to nature for solutions to technological questions has brought us many
unforeseen great concepts. This encouraging course seems to hold on for many
aspects in technology. Many efforts were made in the area of computer technology
employing mechanisms known from biological systems [13]. For this work, we
concentrate on information transmission and reaction capabilities employed by
signaling pathways for inter-cellular communication [14].

The focus of this section is to briefly introduce the information exchange
in cellular environments and to extract the issues in computer networks that
can be addressed by the utilization of these mechanisms [15,16]. Similar to the
structure, the intercommunication within both systems is comparable [17,18].
Information exchange between cells, called signaling pathways, follows the same
principles that are required by network nodes. A message is sent to a destination
and transferred, possibly using multiple hops, to this target.

From a local point of view, the information transfer works as follows. The cell
expresses a specific surface molecule, the receptor. In consequence this receptor
is activated, e.g. by a change in its sterical or chemical conformation (phosphory-
lation of defined amino acids). The activated receptor molecule is able to further
activate intracellular molecules resulting in a ”domino effect”. The principle is
not as simple as described here. Many of these signaling pathways are interfering
and interacting. Different signaling molecules are affecting the same pathway. In-
hibitory pathways are interfering with the straightforward signal transduction.
To sum up, the final effect is dependent on the strongest signal. The effect of
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Signal
(information)

Gene transcription
results in the
formation of a
specific cellular
response to the
signal

Fig. 2. Information exchange in the cellular environment

such a signal transduction pathway is mostly gene transcription, other possibili-
ties are the reorganization of intracellular structure such as the cell cytoskeleton
or the internalization and externalization in and out of the cell. Gene transcrip-
tion means that the cell respond to incoming the signal by production of other
factors which are then secreted (transported out of the cell), where it can induce
signaling processes in the cell’s direct environment. This process is depicted in
a simplified manner in figure 2. A cell is shown with a single receptor that is
able to receive a very specific signal, i.e. a protein, and to activate a signaling
cascade which finally forms the cellular response.

This specific response is the key to information processing. It depends on the
type of the signal and the state of the cells (which receptors have been built and
which of them are already occupied by particular proteins). Finally, a specific
cellular response is induced: either the local state is manipulated and/or a new
messaging protein is created. The remote information exchange works analogue.
Proteins, peptides, and steroids are used as information particles (hormones) be-
tween cells. A signal is released into the blood stream, the medium that carries
it to distant cells and induces an answer in these cells which then passes on the
information or can activate helper cells (e.g. the Renin-Angiotensin-Aldosteron
system [19] and the immune system). The interesting property of this trans-
mission is that the information itself addresses the destination. During differen-
tiation a cell is programmed to express a subset of receptor in order to fulfill
a specific function in the tissue. In consequence, hormones in the bloodstream
affect only those cells expressing the correct receptor. This is the main reason
for the specificity of cellular signal transduction. Of course, cells also express a
variety of receptors which regulate the cellular metabolism, survival, and death.

The lessons to learn from biology are the efficient and, above all, the very
specific response to a problem, the shortening of information pathways, and the
possibility of directing each problem to the adequate helper component. There-
fore, the adaptation of mechanisms from cell and molecular biology promises to
enable a more efficient information exchange. Besides all the encouraging prop-
erties, bio-inspired techniques must be used carefully by modeling biological and
technical systems and choosing only adequate solutions.

So, how to use the described methods to WSN and SANET operation and
control? The biological model needs to be checked and - partially - adapted
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Fig. 3. Architecture and behavior of a local node

to match the tasks in sensor/actuator networks. In the following section, we
describe and discuss a solution for network-centric operation and control based
on the described biological mechanisms.

3 Rule-Based State Machine for Localized Actuation
Control

As already mentioned, three basic mechanisms are used to achieve the demanded
goals:

— Data-centric operation — Each message carries all necessary information to
allow the specific handling of the associated data.

— Specific reaction on received data — A rule-based programming scheme is
used to describe specific actions to be taken after the reception of particular
information fragments.

— Simple local behavior control — We do not intend to control the overall system
but focus on the operation of the individual node instead (see discussion on
emergent system behavior in section 4). We designed simple state machines
that control each node whether sensor or actuator.

The complete scheme as adapted from cellular behavior is shown in figure 3.
Even though the principles are described later, the general architecture and the
behavior can be shortly explained. Depicted is a network node that has four
directly connected neighbors (A, B, C, D). The local behavior is controlled by
a state machine (m, o) and a set of rules (RuleDB). In this example, a data
message of type x is received and transformed locally into a message of type
y. Finally, this message is distributed to all neighbors. (Remark: we consider
wireless communication. Therefore, each message that a node sends is basically
a broadcast to all neighboring nodes.)

3.1 Data-Centric Operation

Classically, communication in ad hoc networks is based on topology information,
i.e. routing paths that have been set-up prior to any data exchange. Addition-
ally, each node carries a unique address that is used to distinguish the desired
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destination. We follow the approach used in typical data-centric communication
schemes, e.g. directed diffusion [10], and replace topology information and ad-
dressing by data-centric operation. Each message is encoded as follows:

M:={type, region, confidence, content}

Using this description, we can encode measurement data as well as actuator
information (type and content). Additionally, the region is included to distin-
guish messages from the local neighborhood from those that traveled over a long
distance. Finally, the confidence value is used to evaluate the message in terms
of importance or priority. Measures with a high confidence will have a stronger
impact on calculations that those with a lower confidence. The confidence can
be changed using aggregation schemes, i.e. two measures of the same value in
the same region will lead to a higher confidence.

The following examples demonstrate the capabilities of the message encoding
for data-centric operation:

— {temperatureC, [10,20], 0.6, 20} :: A temperature of 20C was measured at
the coordinates [10,20]. The confidence is 0.6, therefore, a low-quality sensor
was employed.

— {pictureJPG, [10,30], 0.9, "binary JPEG”} :: A picture was taken in format
JPEG at the coordinates [10,30].

3.2 Specific Reaction on Received Data

An extensible and flexible rule system is used to evaluate received messages and
to provide the ”programming” that specifies the cellular response. Even though
the message handling in biological cells is more sophisticated, the basic principles
including the processing instructions (the DNA) are modeled. Each rule consists
of two parts: a number of input values and some output: INPUT — OUTPUT.
Therefore, typical rules could look like that:

— A — B :: message A is converted to message B
— C — {} :: message C is discarded
— AAB — C :: if both messages A and B were received, a message C is created

Using all the other information available in each message, more complex rules
can be derived:

— A(content> 10) — A(confidence:= 0.9) :: if the measured value was larger
than 10, a copy of A is created with confidence set to 0.9

— A(content= z) A A(content= y) — A(content:= x + y) :: two messages of
type A are aggregated to a single one by adding their values

Again, an example is provided to reflect the capabilities of the data-centric
operation:

— temperatureC(content> 85) —alarmFire(confidence:= 0.8)
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measure receive
S: A:

transmit actuate

Fig. 4. Simple state machines for sensors (S) and actuators (A)

input Rule interpreter | output
-A>B
-A+B>C

drop

Fig. 5. Rule interpreter with system input and output

3.3 Simple Local Behavior Control

The local behavior is controlled by simple state machines acting as sensors or ac-
tuators. Additionally, an interpreter is checking the installed rules to previously
received messages. It uses a queuing subsystem that acts as a generic receptor
for all messages and keeps them for a given time. This time control is necessary
to prevent queue overflows due to received messages of unknown type. The basic
state machines for sensing and transmitting data and receiving and acting on
data for sensors and actuators, respectively, are shown in figure 4.

The rule interpreter and its queuing system are depicted in figure 5. Basically,
this is the standard behavior of each communication system. Received messages
are stored in a local database. After a given timeout, each message is dropped
in order to keep the size of the database below a given threshold. Periodically,
the rule interpreter compares all received messages against the programmed rule
set. A matching rule terminates the search and the rule is applied.

3.4 Case Studies

Two case studies are provided in this section to elaborate the principles and
the flexibility of the proposed network-centric operation and control method for
sensor/actuator networks: first, data aggregation and emergency calls, and sec-
ondly, in-network actuation control. Both examples were also chosen in order to
show the benefits of our approach compared to traditional WSN mechanisms.

Data aggregation and emergency calls. We consider a typical scenario for
wireless sensor networks. Sensor nodes are distributed over a given area. All nodes
are equipped with sensors measuring a particular physical phenomenon, e.g. the
temperature. In order to obtain information about the territory, the measure-
ment results are transported to a given sink that analyzes the received temper-
ature information. Additionally, measures exceeding a given threshold represent



