OPERATING SYNTEM
o C“NCEPTS ﬁ§

L T :li."
-

SILBEI{SCHATZ
GALVIN

FOURTH EDITION

OPERATING
SYSTEM
CONCEPTS

Abraham Silberschatz

University of Texas

Peter B. Galvin

Brown University

v Addison-Wesley Publishing Company

Reading, Massachusetts « Menlo Park, California = New York

Don Mills, Ontario « Wokingham, England - Amsterdam . Bonn
Sydney . Singapore . Tokyo . Madrid - San Juan . Milan . Paris

Sponsoring Editor: Deborah Lafferty
Senior Editor: Tom Stone

Senior Production Supervisor: Helen Wythe
Marketing Manager: Phyllis Cerys

Technical Art Coordinator: Susan London-Payne
Cover and Endpaper Designer: Howard S. Friedman
Manufacturing Manager: Roy Logan

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and Addison-Wesley was aware of a trademark claim, the designa-
tions have been printed in initial caps or all caps.

The procedures and applications presented in this book have been included
for their instructional value. They have been tested with care but are not guar-
anteed for any particular purpose. The publisher does not offer any warranties
or representations, nor does it accept any liabilities with respect to the pro-
grams or applications.

Library of Congress Cataloging-in-Publication Data

Silberschatz, Abraham.
Operating system concepts / Abraham Silberschatz, Peter B. Galvin.
o cm.
Includes bibliographical references and index.
ISBN 0-201-50480-4
1. Operating systems (Computers) 1. Galvin, Peter B. I Title.
QA76.76.06355583 1994
005.4'3--dc20 93-24415
CIP

Reproduced by Addison-Wesley from camera-ready copy supplied by the
authors.

Reprinted with corrections February, 1994

Copyright © 1994 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.

ISBN 0-201-50480-4
2345678910-MA-9594

To my parents, Wira and Mietek,
my wife, Haya,
and my children, Lemor, Sivan and Aaron.

Avi Silberschatz

To Carla and Gwendolyn.

Peter Galvin

PREFACE

Operating systems are an essential part of a computer system. Similarly, a
course on operating systems is an essential part of a computer-science
education. This book is intended as a text for an introductory course in
operating systems at the junior or senior undergraduate level, or first-year
graduate level. It provides a clear description of the concepts that underlie
operating systems.

This book does not concentrate on any particular operating system or
hardware. Instead, it discusses fundamental concepts that are applicable to
a variety of systems. We do, however, present a large number of
examples that pertain to UNIX and other popular operating systems. In
particular, we use Sun Microsystem’s Solaris 2 operating system, a version
of UNIX, which recently has been transformed into a modern operating
system with support for threads at the kernel and user levels, symmetric
multiprocessing, and real-time scheduling. Other examples used include
Microsoft Ms-DOS, Windows, and Windows/NT, IBM 0S/2, the Apple
Macintosh Operating System, and DEC VMS and TOPS-20, among others.

Prerequisites

As prerequisites, we assume that the reader is familiar with general
computer organization and a high-level language, such as PASCAL. The
hardware topics required for an understanding of operating systems are
included in Chapter 2. We use pseudo-PASCAL notation for code examples,
but the algorithms can be understood without a thorough knowledge of
PASCAL.

vi B Preface

Content of this Book

The text is organized in six major parts:

® Overview (Chapters 1 to 3). These chapters explain what operating
systems are, what they do, and how they are designed and constructed.
They explain how the concept of an operating system has developed,
what the common features of an operating system are, what an
operating system does for the user, and what it does for the
computer-system operator. The presentation is motivational, historical,
and explanatory in nature. We have avoided a discussion of how
things are done internally in these chapters. Therefore, they are
suitable for individuals or lower-level classes who want to learn what
an operating system is, without getting into the details of the internal
algorithms. Additionally, Chapter 2 covers the hardware topics which
are important to an understanding of operating systems. Readers
well-versed in hardware topics, including VO, DMA, and hard disk
operation, may chose to skim or skip this chapter.

® Process management (Chapters 4 to 7). The process concept and
concurrency are at the very heart of modern operating systems. A
process is the unit of work in a system. Such a system consists of a
collection of concurrently executing processes, some of which are
operating-system processes (those that execute system code), and the
rest of which are user processes (those that execute user code). These
chapters cover various methods for process scheduling, interprocess
communication, process synchronization, and deadlock handling. Also
included under this topic is a discussion of threads.

® Storage management (Chapters 8 to 12). A process must be in main
memory (at least partially) during execution. To improve both the
utilization of CPU and the speed of its response to its users, the
computer must keep several processes in memory. There are many
different memory-management schemes. These schemes reflect
various approaches to memory management, and the effectiveness of
the different algorithms depends on the particular situation. Since main
memory is usually too small to accommodate all data and programs
and cannot store data permanently, the computer system must provide
secondary storage to back up main memory. Most modern computer
systems use disks as the primary on-line storage medium for
information (both programs and data). The file system provides the
mechanism for on-line storage of and access to both data and programs
residing on the disks. These chapters deal with the classic internal
algorithms and structures of storage management. They provide a firm
practical understanding of the algorithms used — the properties,
advantages, and disadvantages.

Preface M vii

® Protection and security (Chapters 13 and 14). The various processes in
an operating system must be protected from one another’s activities.
For that purpose, mechanisms exist that can be used to ensure that the
files, memory segments, CPU, and other resources can be operated on
by only those processes that have gained proper authorization from the
operating system. Protection is a mechanism for controlling the access
of programs, processes, or users to the resources defined by a
computer system. This mechanism must provide a means for
specification of the controls to be imposed, together with some means
of enforcement. Security protects the information stored in the system
(both data and code), as well as the physical resources of the computer
system, from unauthorized access, malicious destruction or alteration,
and accidental introduction of inconsistency.

® Distributed systems (Chapters 15 to 18). A distributed system is a
collection of processors that do not share memory or a clock. Such a
system provides the user with access to the various resources the
system maintains. Access to a shared resource allows computation
speedup and improved data availability and reliability. Such a system
also provides the user with a distributed file system, which is a file-
service system whose users, servers, and storage devices are dispersed
among the various sites of a distributed system. A distributed system
must provide various mechanisms for process synchronization and
communication, for dealing with the deadlock problem and the variety
of failures that are not encountered in a centralized system.

® Case studies (Chapters 19 to 21). The various concepts described in
this book can be drawn together by describing real operating systems.
Two UNIx-based operating systems are covered in detail — Berkeley
4.38SD and Mach. These operating systems were chosen in part because
UNIX at one time was almost small enough to understand and yet was
not a toy operating system. Most of its internal algorithms were
selected for simplicity, not for speed or sophistication. UNIX is readily
available to computer-science departments, so many students have
access to it. Mach provides an opportunity for us to study a modern
operating system that provides compatibility with 4.3BSD but has a
drastically different design and implementation. Chapter 21 briefly
describes some of the most influential operating systems.

® The Nachos System (Appendix). A good way to gain a deeper
understanding of modern operating systems concepts is for the
students to get their hands dirty — to take apart the code for an
operating system, to see how it works at a low level, to build
significant pieces of the operating system themselves, and to observe
the impact of those changes. The Nachos instructional operating
system, which is briefly described in the Appendix, provides the

viii B Preface

opportunity to see how the basic concepts introduced in this text can
be used to solve real-world problems. The Nachos system was
developed by Professor Thomas Anderson from the University of
California at Berkeley, to complement the third edition of this text, and
it is freely available in the public domain via the Internet. Reviewers,
who have used the Nachos project at other universities, call it a
practical and positive supplement.

The Fourth Edition

Many comments and suggestions were forwarded to us concerning our
previous editions. These, together with our own observations, have
prodded us to produce this fourth edition. Our basic procedure was to
reorganize and rewrite the material in each chapter, adding new
information, examples, and diagrams where appropriate. We also brought
older material up to date and removed material that was no longer of
interest. Finally, we improved the exercises and updated the references.
Substantive revisions were made in the following chapters:

® Chapter 1. We have condensed some of the material related to older
systems and have expanded our discussion of parallel, distributed, and
real-time systems.

® Chapter 2. We collected coverage of strictly-hardware topics from the
other chapters and reorganized them here, making this material easier
to skip if it is already understood, and easier to use as a reference. We
also expanded discussion of /O topics, caching, and protection.

® Chapter 4. This chapter introduces the process concept. The material
in this chapter appeared in parts of old Chapters 4 and 5. We moved
the IPC material from old Chapter 5 to Chapter 4, since we believe that
the material should be covered as part of the discussion on the process
concept rather that as part of the process coordination chapter. We
also expanded our discussion on threads considerably, and included
Solaris 2 threads as an example.

® Chapter 5. This chapter is a reorganized old Chapter 4. It now deals
primarily with CPU scheduling issues.

® Chapter 6. This chapter is a reorganized old Chapter 5. We removed
Eisenberg and McGuire’s solution to the critical-section problem for n
processes from the main text (it is now an exercise). We also
condensed the discussions concerning the critical region concept. We
added new material on atomic transactions, including write-ahead
logging and concurrency control schemes. Synchronization in Solaris 2
is included as an example.

Preface B ix

® Chapters 8 and 9. We have added new material on up-to-date
computer architectures that support paging and segmentation for large
address spaces. Segmentation and paging are illuminated by an 0s2
example.

e Chapters 10, 11, and 12. We have expanded the material and
completely reorganized the presentation of the file-system concept and
implementation. We now present the logical aspect of the file system
in Chapter 10, the implementation issues in Chapter 11, and the
underlying secondary storage system in Chapter 12. We also have
added new material on swap space, stable storage, recovery, reliability
and performance.

® Chapters 13 and 14. We have separated old Chapter 11 into two
chapters — one dealing with protection issues (Chapter 13), the other
dealing with security issues (Chapter 14). In each of these chapters,
we have reorganized the material, and have added new information.
Major expansions include coverage of the Internet Worm and viruses.

® Chapters 15 and 16. We have separated old Chapter 12 into two
chapters — one dealing with network structures (Chapter 15), the
other dealing with distributed system structure (Chapter 16). In each of
these chapters, we have reorganized the material, and have added new
information. Major expansions include coverage of network protocols
and functionality, remote services, thread-management, and the Open
Software Foundation’s Distributed Computing Environment (DCE)
thread package.

® Chapter 17. This is old Chapter 14 on distributed file systems. We
have brought the material up-to-date in this rapidly changing area.

® Chapter 18. This is old Chapter 13 on distributed coordination. We
have brought the material up-to-date and added new sections on the
two-phase commit protocol and concurrency control schemes.

® Chapter 19. This chapter on UNIX has been updated to reflect the
current state of BSD UNIX and its current implementation.

® Chapter 20. This is old Chapter 16 on the Mach operating system. It
has been updated to describe components of Mach version 3.

® Appendix. This is a new Appendix, which was was authored by
Professor Thomas Anderson from UC Berkeley. This Appendix
provides a brief tutorial introduction to the Nachos system. The
Appendix presents the philosophy governing the Nachos environment
as well as providing a general introduction to the Nachos operating
system and the five project activities which accompany the software.
The Appendix concludes with instructions for retrieving Nachos from
the Internet via ftp.

x W Preface

Mailing List and Supplements

We now provide an environment where users can communicate among
themselves and with us. We have created a mailing list consisting of users
of our book with the e-mail address — os-book@cs.utexas.edu. If you wish
to be on the list, please send a message to avi@cs.utexas.edu indicating
your name, affiliation, and e-mail address.

For information about the teaching supplements, which complement
this book, mail may be sent to os4e@aw.com.

Errata

We have attempted to clean up every error in this new edition, but — as
happens with operating systems — there will undoubtedly still be some
obscure bugs. We would appreciate it if you, the reader, would notify us
of any errors or omissions in the book. Also, if you would like to suggest
improvements or to contribute exercises, we would be glad to hear from
you. Any correspondence should be sent to A. Silberschatz, Department of
Computer Sciences, The University of Texas.

Acknowledgments

This book is derived from the previous editions, all of which were
coauthored by James Peterson. Other people that have helped with the
previous editions include Randy Bentson, Jeff Brumfield, Gael Buckley,
Thomas Casavant, Ajoy Kumar Datta, Joe Deck, Robert Fowler, G. Scott
Graham, Rebecca Hartman, Wayne Hathaway, Christopher Haynes,
Richard Kieburtz, Carol Kroll, Thomas LeBlanc, John Leggett, Michael
Molloy, Ed Posnak, John Quarterman, Charles Oualline, John Stankovic,
Steven Stepanek, Louis Stevens, and John Werth.

Lyn Dupré copyedited the book; Cliff Wilkes provided technical
copyediting; Sara Strandtman edited our text into troff format. Debbie
Lafferty, Tom Stone, and Helen Wythe were helpful with book production.

Chapter 17 was derived from a paper by Levy and Silberschatz [1990].
Chapter 19 was derived from a paper by Quarterman et al. [1985]. John
Quarterman helped us to convert the material on UNIX 4.2BSD to UNIX 4.3BSD.
David Black worked extensively with us to update Chapter 20.

We thank the following people, who reviewed this edition of the book:
Joseph Boykin, P. C. Capon, John Carpenter, Thomas Doeppner, Caleb
Drake, Hans Flack, Mark Holliday, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Yoichi Muraoka, Jim M. Ng, Boris Putanec,
Adam Stauffer, Hal Stern, David Umbaugh, Steve Vinoski, and J. S.
Weston.

A.S.
P.B.G.

CONTENTS

PART ONE B OVERVIEW

Chapter1 Introduction

1.1 What Is an Operating System? 3 1.7 Parallel Systems 20
1.2 Early Systems 6 1.8 Distributed Systems 22
1.3 Simple Batch Systems 7 1.9 Real-Time Systems 23
1.4 Multiprogrammed Batched 1.10 Summary 25

Systems 13 Exercises 26
1.5 Time-Sharing Systems 15 Bibliographic Notes 27

1.6 Personal-Computer Systems 17

Chapter2 Computer-System Structures

2.1 Computer-System Operation 29 2.6 General-System Architecture 51
2.2 I/O Structure 32 2.7 Summary 52

2.3 Storage Structure 37 Exercises 53

2.4 Storage Hierarchy 42 Bibliographic Notes 55

2.5 Hardware Protection 45

Chapter 3 Operating-System Structures

3.1 System Components 57 3.4 System Programs 74
3.2 Operating-System Services 63 3.5 System Structure 76
3.3 System Calls 65 3.6 Virtual Machines 82

xii Contents

3.7 System Design and 3.9 Summary 90
Implementation 86 Exercises 91
3.8 System Generation 89 Bibliographic Notes 92

PART TWO H PROCESS MANAGEMENT

Chapter 4 Processes

4.1 Process Concept 97 4.6 Interprocess Communication 116
4.2 Process Scheduling 100 47 Summary 126

4.3 Operation on Processes 105 Exercises 127

4.4 Cooperating Processes 108 Bibliographic Notes 129

45 Threads 111

Chapter 5 CPU Scheduling

5.1 Basic Concepts 131 5.6 Algorithm Evaluation 152
5.2 Scheduling Criteria 135 5.7 Summary 158

5.3 Scheduling Algorithms 137 Exercises 159

5.4 Multiple-Processor Scheduling 149 Bibliographic Notes 161

5.5 Real-Time Scheduling 150

Chapter 6 Process Synchronization

6.1 Background 163 6.7 Monitors 190
6.2 The Critical-Section Problem 165 6.8 Synchronization in Solaris2 198
6.3 Synchronization Hardware 172 6.9 Atomic Transactions 199
6.4 Semaphores 175 6.10 Summary 208
6.5 Classical Problems of Exercises 210
Synchronization 181 Bibliographic Notes 214

6.6 Critical Regions 186

Chapter 7 Deadlocks

7.1 System Model 217 7.4 Deadlock Prevention 224
7.2 Deadlock Characterization 219 7.5 Deadlock Avoidance 227
7.3 Methods for Handling 7.6 Deadlock Detection 234

Deadlocks 223 7.7 Recovery from Deadlock 238

Contents

7.8 Combined Approach to Bibliographic Notes 245
Deadlock Handling 240 Exercises 242
7.9 Summary 241

PART THREE B STORAGE MANAGEMENT

Chapter 8 Memory Management

8.1 Background 249 8.6 Segmentation 283

8.2 Logical versus Physical 8.7 Segmentation with Paging 290
Address Space 255 8.8 Summary 294

8.3 Swapping 256 Exercises 296

8.4 Contiguous Allocation 259 Bibliographic Notes 299

8.5 Paging 267

Chapter 9 Virtual Memory

9.1 Background 301 9.7 Thrashing 329

9.2 Demand Paging 303 9.8 Other Considerations 334
9.3 Performance of Demand Paging 309 9.9 Demand Segmentation 341
9.4 Page Replacement 312 9.10 Summary 342

9.5 Page-Replacement Algorithms 315 Exercises 343

9.6 Allocation of Frames 326 Bibliographic Notes 348

Chapter 10 File-System Interface

10.1 File Concept 349 10.5 Consistency Semantics 378
10.2 Access Methods 358 10.6 Summary 379

10.3 Directory Structure 361 Exercises 380

10.4 Protection 373 Bibliographic Notes 381

Chapter 11 File-System Implementation

11.1 File-System Structure 383 11.6 Recovery 403
11.2 Allocation Methods 387 11.7 Summary 405
11.3 Free-Space Management 397 Exercises 406
11.4 Directory Implementation 399 Bibliographic Notes 408

11.5 Efficiency and Performance 401

xiii

xiv Contents

Chapter 12 Secondary-Storage Structure

12.1 Disk Structure 409 12.6 Stable-Storage

12.2 Disk Scheduling 410 Implementation 424
12.3 Disk Management 417 12.7 Summary 425

12.4 Swap-Space Management 419 Exercises 426

12.5 Disk Reliability 422 Bibliographic Notes 427

PART FOUR B PROTECTION AND SECURITY

Chapter 13 Protection

13.1 Goals of Protection 431 13.6 Capability-Based Systems 448
13.2 Domain of Protection 432 13.7 Language-Based Protection 451
13.3 Access Matrix 438 13.8 Summary 455
13.4 Implementation of Access Exercises 455

Matrix 443 Bibliographic Notes 457

13.5 Revocation of Access Rights 446

Chapter 14 Security

14.1 The Security Problem 459 14.6 Encryption 471

14.2 Authentication 461 14.7 Summary 473

14.3 Program Threats 464 Exercises 473

14.4 System Threats 465 Bibliographic Notes 474

14.5 Threat Monitoring 469

PART FIVE B DISTRIBUTED SYSTEMS

Chapter 15 Network Structures

15.1 Background 479 15.6 Design Strategies 498
15.2 Motivation 481 15.7 Networking Example 501
15.3 Topology 482 15.8 Summary 504

15.4 Network Types 488 Exercises 504

15.5 Communication 491 Bibliographic Notes 505

Contents xv
Chapter 16 Distributed-System Structures
16.1 Network-Operating Systems 507 16.5 Design Issues 519
16.2 Distributed-Operating Systems 509 16.6 Summary 521
16.3 Remote Services 512 Exercises 522
16.4 Robustness 517 Bibliographic Notes 523
Chapter 17 Distributed-File Systems
17.1 Background 525 17.6 Example Systems 539
17.2 Naming and Transparency 527 17.7 Summary 567
17.3 Remote File Access 531 Exercises 568
17.4 Stateful versus Stateless Service 536 Bibliographic Notes 569
17.5 File Replication 538
Chapter 18 Distributed Coordination
18.1 Event Ordering 571 18.6 Election Algorithms 595
18.2 Mutual Exclusion 574 18.7 Reaching Agreement 598
18.3 Atomicity 577 18.8 Summary 600
18.4 Concurrency Control 581 Exercises 601
18.5 Deadlock Handling 586 Bibliographic Notes 602
PART SIX B CASE STUDIES
Chapter 19 The UNIX System
19.1 History 607 19.7 File System 636
19.2 Design Principles 613 19.8 I/OSystem 645
19.3 Programmer Interface 615 19.9 Interprocess Communication 649
19.4 User Interface 623 19.10 Summary 655
19.5 Process Management 627 Exercises 655
19.6 Memory Management 632 Bibliographic Notes 657

Chapter 20 The Mach System

20.1 History 659 20.6 Memory Management 679
20.2 Design Principles 661 20.7 Programmer Interface 685
20.3 System Components 662 20.8 Summary 686
20.4 Process Management 666 Exercises 687

20.5 Interprocess Communication 673 Bibliographic Notes 688

xvi Contents

Chapter 21 Historical Perspective

21.1 Atlas 691 21.5 CTSS 695

21.2 XDS-940 692 21.6 MULTICS 696
21.3 THE 693 21.7 OS/360 696

21.4 RC4000 694 21.8 Other Systems 698

Appendix The Nachos System

A.1 Overview 700 A.5 Conclusions 713
A.2 Nachos Software Structure 702 Bibliographic Notes 713
A.3 Sample Assignments 705
A4 Information on Obtaining a
Copy of Nachos 711

Bibliography 715
Credits 745
Index 747

PART ONE

OVERVIEW

An operating system is a program that acts as an intermediary between a
user of a computer and the computer hardware. The purpose of an
operating system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

We trace the development of operating systems from the first hands-on
systems to current multiprogrammed and time-shared systems.
Understanding the reasons behind the development of operating systems
gives us an appreciation for what an operating system does and how it
does it.

The operating system must ensure the correct operation of the
computer system. To prevent user programs from interfering with the
proper operation of the system, the hardware must provide appropriate
mechanisms to ensure such proper behavior. We describe the basic
computer architecture that makes it possible to write a correct operating
system.

The operating system provides certain services to programs and to the
users of those programs in order to make the programming task easier.
The specific services provided will, of course, differ from one operating
system to another, but there are some common classes of services that we
identify and explore.

