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Preface

Whereas no chemist would these days treat, say, molecular vibrations with-
out using the vocabulary of group theory, there is, unfortunately, no element-
ary introduction to the band theory of solids which adopts this approach.
There are, of course, excellent books on the group theory of the solid state,
but they are all at a rather rigorous level and are not suitable as an
introduction to band theory. Almost twenty years ago I wrote such an
introduction in which I made much use of the concept of symmetry, but
I could not employ the vocabulary of group theory since undergraduates in
the physical sciences were not exposed to this subject in those days. Finite
group theory is now the lingua franca of chemistry and many undergraduate
courses in physics include some group theory. I felt, therefore, that the time
had now come to have a book which would bridge the gap between the
current elementary texts on band theory and the more advanced treatments
of the group theory of solid state.

I am sure I do not have to justify the use of group theory in the band theory
of solids. There is hardly any subject in physics in which so much of the
structure comes straight from group theory and a lot of important ideas
become obscure if this language cannot be used: to have to understand band
theory without realizing that the Brillouin zone is a graphical depiction of the
irreducible representations of the space group of a crystal, and of the struc-
ture of their bases, is an almost intolerable limitation by present standards.

I hope that this work will not be pigeon-holed with texts on the group
theory of solid state. In the present book, as a difference, only the simplest
and most basic of group-theoretical ideas are used and no attempt is made at
the great problems of the irreducibility and completeness of the space group
representations which take so much room in the group-theoretical treat-
ments. I have made no attempt at absolute rigour but, rather, I made
a serious effort to convey a feeling for the way in which symmetry determines
many of the essential ideas in solid-state theory, thus, I hope, illuminating
some of the major concepts in the band theory of solids.

In writing this book I was very much aware of the present very strong
interest in solid-state chemistry and it was clear to me that there was no
quicker entry into the subject for chemists, with their training in the use of
group theory, than by means of the approach used here. The choice of many
topics was also made taking the needs of chemists into account and many of
the examples used have a chemical flavour. I hope, however, that the general
approach of this book will appeal to all physical scientists who would like to
go a little beyond the elementary treatments so far available.



vi PREFACE

The book started as a set of lectures which I gave in 1982 at the Depart-
ment of Chemistry of the University of Perugia at the invitation of Professor
Antonio Sgamellotti and I am very grateful to him for having given me this
opportunity. When I was a visiting professor at the Department of Chemistry
in Rome (University La Sapienza) in 1985, I was presented with the possibil-
ity of greatly improving the lecture notes which I had provided at Perugia.
Indeed, the typescript that was circulated at Rome contained, albeit in
rudimentary form, most of the material in the present volume. I am most
grateful to Professor Piero Porta who not only invited me to give those
lectures but also provided numerous useful suggestions. It was my experience
during these lectures that the material of this book, suitably simplified where
necessary, can be covered in some twenty hours and that audiences including
undergraduate students in both physics and chemistry were perfectly able to
follow the material.

There is, of course, some overlap between many topics treated in this book
and those in my former Band theory of metals. Naturally, Bloch functions and
Brillouin zones have to re-appear, although the form of presentation is
generally different. On the other hand, many new subjects are included. Space
groups and their symmetry operations are given in some detail. There is
a chapter on phonons in which the phonon spectrum of silicon is discussed as
an example. The larger part of a chapter is devoted to Peierls instabilities and
their relation to the Jahn—Teller effect, including a detailed treatment of quasi
one-dimensional chains. A uniform treatment of Lowdin and Wannier func-
tions is provided through a discussion of equivalent functions. A chapter on
surface and impurity states contains a detailed treatment of the Koster and
Slater method, as an introduction to the use of Green functions, for which
a full but simple example is provided. Numerous problems throughout the
book, for which complete solutions are given in its last chapter, provide an
opportunity not only for applying the major ideas discussed but also for
completing some parts of the treatment.

I am acutely aware, of course, not only that there are many subjects
missing in this book but also that for much of the modern work in solid-state
theory a different approach to the one used here is desirable. It goes without
saying, for instance, that if one wants to move towards the study of bands in
non-crystalline solids, the geometrical and crystallographic approach of this
book is not the most useful. Likewise, in the study of many structural
properties, a much more detailed study of the potential field in the solid than
the one provided here is necessary. Many properties of some solids are best
understood from a far more chemical point of view, and so on. I took the
view, however, that what is done extremely well in other books there was no
point for me to emulate. I did try instead to take a very central and significant
part of the subject and then to treat it in a way that would not be easy to find
in the literature. I hope that with the firm basis provided by this book readers
will find it much easier to move forward in the subject.



PREFACE vii

Many kind friends have helped me to improve this book and I am most
grateful to them. Through the kind intervention of Dr Graham Richards,
Mr Jonathan Essex checked my approximate calculations for eqn (14-2.12).
I am particularly indebted to Professor Roald Hoffmann who not only
provided me with a critical reading of the manuscript but also arranged for
two of his collaborators at Cornell, Dr Christian Kollmar and Mr Yat-Ting,
to do the same. Their critical comments were enormously useful in improving
the text. Drs Harry Rosenberg and Terry Willis read selected chapters and
I am sure that it is thanks to them that, amongst other things, my crystallo-
graphic terminology was greatly improved. Dr Peter Herzig, of the Univer-
sity of Vienna, read the whole text and his critical eye spotted a number of
mistakes that would have certainly made the book more difficult to read.
Finally, I can hardly thank sufficiently Dr Tony Cox who read the manu-
script not just once but twice and who never failed to find weak arguments in
need of improvement.

In order to save on the cost of the book I have drawn all the illustrations
myself on a Macintosh computer and I am very grateful to my sons,
Drs Daniel and Paul Altmann for their help and advice with the necessary
software.

An author is indeed fortunate who has such good friends to help him
improve his work. I only hope that my readers will also approach this book in
the spirit in which I wrote it. It is harder, in my experience, to provide
persuasive rather than complete and rigorous argument and the reader
would probably do better in trying to grasp the gist of the discussions
presented here rather than attempting to analyse them to exhaustion. Within
these limits, nevertheless, I have tried to make my arguments as easy to follow
as possible, partly by providing a very comprehensive cross-referencing
system. I have also attempted to foresee possible misreadings and I have
given here and there warnings to that effect. Where I may have failed,
however, it is not for want of trying!

Oxford S.L.A.
1990
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0

Notation

1. References

General cross-references

§3-5

§5

(6-3.5)
(3.5)

(5

(L3), (R3)
2.1

Section 5 of Chapter 3. Chapters are numbered with bold-face
numerals which are dropped in all cross-references, formulae, etc.
corresponding to the current chapter.

Section 5 of the current chapter.

equation (5) of §6-3.

equation 5 of § 3 of the current chapter.

equation 5 of the current section.

left-hand side and right-hand side, respectively, of eqn (3).

after Problem, Fig., or Table, refers to the corresponding item
serially numbered in Section 2. The section number is dropped
within the current section.

Cross-references on left margins of displayed formulae

3
3

3
23

2|3
F,T,P

equation (3) is used to derive the equation on the right.

equation (3), in a changed notation, is used to derive the equation
on the right.

equation (3) is used, but not immediately, to derive the equation
on the right.

equations (2) and (3) are applied in that order to obtain

the equation on the right.

equation (2) applied on equation (3) gives the equation on the right.
on any of the above, indicate a Figure, Table, or Problem, respect-
ively.

Literature references

Ono (1945) identifies a paper or book under that name in the alphabetic list

of references at the end of the book.



2 §0-2
2. Symbols used

A’ (A7)

C(g)
[C(G)]

x(glu)

1(g1G)

D

det 4

Ao

A&
d;;,6(g. g)
0

)

OE/dk,

NOTATION

one-dimensional irreducible representations of a point
group symmetrical (antisymmetrical) with respect to

a symmetry plane, §6-4.

some arbitrary operator.

for all.

unit vectors, mostly chosen to be primitive vectors.
reciprocal vectors, (4-2.6), (4-2.7); (4-3.3).

complex conjugates. Notice that in order to avoid
confusion, the asterisk is never used in this book to denote
reciprocal vectors.

Coulomb integral, (14-2.1).

Bravais lattice, §3-5.

resonance integral, (10-2.15), (14-2.2).

class of the element g;, §2-1.

number of classes in G, § 15-2, Problem 2.

electron concentration per atom, § 12-1.

character of operation g in the basis {u]|,

(12-4.1).

character of the operation § (written as g when
unambiguous) in the representation G of the group G,
(2-4.17).

interplanar distance between planes of a stack, §4-4.
determinant of the matrix A.

perturbation potential at a lattice site, § 14-3.

band gap, §10-1.

Kronecker’s delta, (2-5.2), (4-9.10).

distortion parameter for a linear lattice, § 12-2.
distortion vector for a linear lattice, § 12-2.

derivative of the energy with respect to k for k varying
along n normal to a Brillouin zone face, §8-2.

energy.

identity element of a group, (2-1.3)

electric field.

eigenvalue of an atomic orbital at a given site, (10-2.17).
Fermi energy, §1-4.

total electronic energy, (1-6.7).

energy as a function of k for the j-th band, § 6-4.
electron charge.

translation eigenvalues labelled by the N discrete
propagation vectors q in the Brillouin zone, (11-2.16).
belongs to.

atomic orbitals, §13-3.



0, ¢(r)
ou(r)

?;

@,(r)

G

|G|
G(E)pm
G(9), G(g)

ié.
I'G|
g
g

XTI

ac

~
&

—

e G e =

=

s R A X
=

SYMBOLS USED §0-2 3

momentum eigenfunction, (1-3.3), (1-3.13).
momentum eigenfunction in a more complete notation,
(1-8.1); free-electron waves.

equivalent functions, (13-1.8).

Wannier functions, (13-2.1); Lowdin orbitals, §13-3.
group of operations g; a space group.

order (number of elements) of G, (15-2.4).

Green function, (14-3.17).

matrix representative of the operator g (written as
g when unambiguous), (2-4.5).

i-th irreducible representation of G, §15-2, Problem 2.
dimension of the above, §15-2, Problem 2.
configuration space operator, §2-2.

function space operator, written as g when
unambiguous, (2-2.7).

inverse of element g;, (2-1.4).

vector of the reciprocal lattice, (4-2.10), (4-6.4).
gradient in k space, (8-3.1).

centre of the Brillouin zone.

resonance integral, (14-2.3).

glide plane, (12-3.1).

H is a subgroup of G, (2-1.5).

H is an invariant subgroup of G, (2-1.6).

quantum mechanical Hamiltonian.

pseudo Hamiltonian, (10-4.6).

Austin—Heine-Sham pseudo Hamiltonian, (10-4.15).
perturbed Hamiltonian, (14-3.2).

Hamiltonian matrix element, (10-1.8).

Planck’s constant h divided by 2x.

transition probability integral, (12-2.9).

number of irreducible representations in G, §15-2,
Problem 2.

imaginary unit.

inversion at the origin of coordinates.

current density, (11-1.2).

conjugator operator, (2-3.11).

vector of orthogonal components [k,, k,, k.1, (1-3.15),
or more usually a vector [k,, k,, k,]1* in the reciprocal
lattice, (4-6.3).

circular wave number, (1-8.6).

Boltzmann’s constant.

oscillator force constant, § 11-2.

small vector normal to a Brillouin zone face, (14-1.9).
integer; likewise k,, k,, (1-3.19).
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NOTATION

length of one-dimensional crystal.

direct product, (2-1.8).

wave length.

electron mass.

mass of an oscillator particle, §11-2.

real factor of the imaginary vector x, §14-1.

total number of primitive cells in a crystal, (5-1.3);
number of atoms in a piece of metal.

number of primitive cells of a crystal in the x direction,
§5-1.

electron concentration or density, §1-5, §12-1.
number of electrons, §1-4.

normalization constant, (15-1-6).

normalization constant, (13-3.10).

order of the set {g;}.

density of states, (1-5.1).

volume of the unit (primitive) cell of the crystal, (4-9.1).
circular frequency (1-8.7); oscillator frequency, §11-2.
normal frequency, §11-2.

point group of a space group G, §3-5.

point group of the Bravais lattice 48, § 3-5.

projection operator, (10-3.10).

momentum (linear).

momentum operator.

propagation vector with discrete values (N in number)
which label vibrational states, (11-2.19).

position vector of components [xyz], (4-4.3); position
vector in the lattice (4-1.12), (4-6.1).

displacement vector of an atom from its equilibrium
position, (11-2.6).

position vector of the n-th atom of the basis, §4-9.
displacement vector corresponding to the site t, § 11-2.
overlap integral, (10-1.9).

Schrédinger group, §2-3.

reduced coordinates, (11-2.13).

electrical conductivity, conductivity tensor, (11-1.2).
reflection plane.

reflection planes (vertical, that is parallel to a principal
rotation axis), the o, planes bisecting the angle between
two binary axes normal to the principal rotation axis.
kinetic energy operator.

translation subgroup, § 3-8.

order of the translation group 7.

kinetic energy, (11-2.10).
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SYMBOLS USED §0-2 5

period (as inverse of frequency). )

k-th irreducible representation of the translation group
T, §5.2.

the k-th irreducible representation of {E|t}, (5-2.9).
the k, irreducible representation of the translation
{E|ma}, §5.2.

translation in configuration space by the translation
vector t, (2-2.3); translation {E|t}, (11-2.16).

a translation vector, in particular a translation vector of
the Bravais lattice 2 or vector of the lattice, (3-8.1),
(4-6.2).

relaxation time, (11-1.3).

cell function in the j-th band, (5-6. 11)

cell functions, (5-6.4).

primitive vectors.

potential energy operator, (10-1.1).

crystal volume, volume of a lump of a solid, (1-3.24).
potential energy, (11-2.11).

crystal potential field.

Fourier coefficient, (4-9.19).

structure factor, (4-9.26).

volume in k space occupied by one electron state, spin
included, (1-3.25).

volume in k space occupied by one electron state, spin
not included, (1-3.24).

phase velocity, (1-8.8).

fractional translation vector, (3-4.3).

velocity, §11-1 only.

group velocity, (1-8.14).

pseudopotential, (10-4.8).

either a translation vector t or a fractional translation
vector, § 3-6.

bisector point of one of the unit vectors of the reciprocal
lattice; belongs to a Brillouin zone edge, (6-4.2).
normal coordinates, (11-2.4).

step function, (14-4.10).

perturbed wave function, (14-3.12).

wave function.

unperturbed wave function, (14-3.3).

Bloch function of the j-th band, (5-6.11).

molecular orbital (linear combination of atomic
orbitals), (14-4.1).

translation eigenfunctions, (5-5.1); Bloch functions,
(5-6.3), (5-6.9).



