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Preface

This volume contains selected papers that were presented at the AMS-IMS-
SIAM Joint Summer Research Conference on “Control Methods in PDE-Dynamical
Systems,” held at the Snowbird Resort, Utah, July 3-7, 2005. This conference was
conceived and proposed by the underwriters in February 2004, with one overriding
aim: to remain rooted in the topic of controlled PDE systems while reaching out to
an ostensibly distinct, yet scientifically related, research community in mathemat-
ics; namely, those researchers involved in the study of dynamical properties and
asymptotic long-time behavior (in particular, stability) of PDE-mixed problems.
It is this community of PDE-based dynamical system specialists that the confer-
ence sought to bring together with the community of PDE-control and optimization
theorists. These two groups have been concentrated in (roughly) complementary
research areas; both in terms of the types of PDEs under investigation and of the
nature of the questions asked.

Indeed, the PDE control group—while not neglecting parabolic PDEs—has
predominantly been focused on more challenging (non-smoothing) hyperbolic or
hyperbolic-like (Petrowski-type) PDEs, typically endowed with low regularity prop-
erties. For these dynamics, this group has studied issues such as: (i) optimal
(global) interior and boundary (trace) regularity of mixed (initial and boundary
value) problems (that is, the issue of well-posedness); (ii) global exact controllabil-
ity and, equivalently, by duality, corresponding continuous observability estimates
(of inverse-type); (iii) uniform stabilization of original conservative (energy pre-
serving) problems: global in the linear case, or local and global in the nonlinear
case, either by the insertion of suitable damping or dissipation, or else through the
introduction of optimization theory; (iv) well-posedness, regularity, or blow-up of
finite energy solutions, corresponding to feedback controlled nonlinear problems.
Here, feedback dissipative mechanisms that are effective in securing good stabil-
ity of hyperbolic dynamics are typically “rough” or “unbounded.” Therefore, the
analysis of the resulting nonlinear feedback problem is typically outside the realm
of perturbation theory and requires very special considerations rooted in nonlinear
PDE theory (e.g., weak convergence methods, compensated compactness, etc.); (v)
control-theoretic properties of controllability, asymptotic behaviour and optimality
for weak solutions of (hyperbolic) conservation laws and balance laws.

The second, dynamical system, group has dealt mostly with the asymptotic
question of long-time behavior of PDEs (non-necessarily dissipative) of smoothing
and regularizing parabolic PDEs; and the consequent issues concerning existence
of global attractors, their geometric, topological, and structural properties, as well
as their dimension (when this is finite).

vii



viii PREFACE

While pursuing separate interests in their respective range of action with a
different focus, and often with a different array of technical tools, the two commu-
nities do share, however, a substantial body of common knowledge and background
in evolution equations. Thus, it was the organizers’ firm conviction that the time
was ripe and the momentum propitious to bring them together at a joint confer-
ence, to mutually stimulate each other and to share recent advances and break-
throughs in their respective disciplines. These would then serve as springboards for
new progress through their combination. This conviction was further buttressed
by recent discoveries that certain nontrivial energy methods, initially devised for
control-theoretic a-priori estimates, once combined with dynamical systems tech-
niques, yield entirely new asymptotic results on well-established, nonlinear PDE
systems, particularly hyperbolic and Petrowski-type PDEs.

These expectations are now particularly well reflected in the contributions to
this volume. They involve nonlinear parabolic, as well as hyperbolic, equations
and their attractors, aeroelasticity, elastic systems, Euler-Korteweg models, thin-
film equations, Schrodinger equations, beam equations, variational principles, etc.
In addition, the static topics of Helmholtz equations, and Morrey potentials are
also prominently featured. A special component of the present volume focuses on
hyperbolic conservation laws where, thanks to recent, major theoretical advances,
a general mathematical theory is now in place. This is also suitable for the analysis
of boundary or distributed control problems, such as they are motivated by various
applications including traffic flow models, gas dynamics, etc.

In all of these areas, the reader will find state-of-the-art accounts as stimulating
starting points for further research.

The organizers are grateful to all participants for their contributions to the
Conference, either by lecturing, by publishing in the present Proceedings, or by
actively taking part in the intellectual debate at the Conference.

Very warm thanks are extended to the AMS staff; in particular, to Ms. Donna
Salter and Ms. Lori Melucci, whose much appreciated efforts and smooth, profes-
sional coordination of a large variety of activities were essential to the success of
the Conference.

Finally, we wish to thank Ms. Christine Thivierge from the AMS Publication
Office, for precious help in connection with the publication of the present volume.
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Asymptotic Stabilization of Systems of Conservation Laws
by Controls Acting at a Single Boundary Point

Fabio Ancona and Andrea Marson

ABSTRACT. We establish a general result on the asymptotic stabilization of a
strictly hyperbolic system of conservation laws near an equilibrium state by
means of controls acting only at one boundary point.

1. Introduction

Consider an n x n system of conservation laws in one-space variable

(1.1) Oyu(t,z) + 0, F(u(t,z)) =0,

on the domain

(1.2) D= {(t,z) eR* |t >0,z €D}, Dy = Jabo(t), ¥1(t)].

Here u = u(t,z) = (ul(t, T),. .., un(t, z)) is the vector of the conserved quantities,
and the components of the vector valued function F(u) = (Fy(u), ..., F,(u)) are the

corresponding fluzes, while 1 (t), %1 (t) denote the boundary profiles. We assume
that the flux function F' is a smooth map defined on an open set 2 C R™, and that
the system (1.1) is strictly hyperbolic, i.e. that for all u € Q the Jacobian matrix
DF(u) has n real distinct eigenvalues

(1.3) A1(u) < -0 < Ap(u) Yue.

We denote by ri(u),...,r,(u) a corresponding basis of right eigenvectors. Each
characteristic field is supposed to be either genuinely nonlinear or linearly degen-
erate in the sense of Lax [La], i.e. for each i = 1,...,n one of the following two
conditions holds

(1.4) DX;(u) - ri(u) >0 YueQ,
(1.5) DXi(u) - ri(u) =0 Yue.

We shall also assume that the boundaries of the domain D are Lipschitz continuous
maps ¥o,¥1 : R>o — R that satisfy ¥(t) < 1(t) for all ¢ > 0, and that all

2000 Mathematics Subject Classification. Primary 35L65, 35B37; Secondary 35B30.
Key words and phrases. Hyperbolic systems, boundary control.
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2 FABIO ANCONA AND ANDREA MARSON

characteristic speeds are bounded away from their slopes, i.e. that are there exists
a fixed integer p € {1,...,n}, and some constant ¢ > 0, so that

(1.6) Ap(u) + < min {ho(®), 1(0)} for a.e. t>0, Vue.

Apt1(u) — ¢ > max {¥o(t), ¥1(t)}

Because of (1.3), (1.6), for a solution u(t,z) defined on the domain D in (1.2)
there will be n — p characteristic lines entering D at the boundary = = v(t), and
p characteristic lines entering D at the boundary z = %;(¢). The mixed initial-
boundary value problem is thus well posed if we prescribe n — p scalar conditions at
x = 1o(t), and p scalar conditions at x = 1);(t). One can express these boundary
conditions in a general form as

{bO (u(t') ¢0(t))) = ’YO(t) )
b (u(t, ¥1(t)) =m(t),

where 7o : R>o — R™™?, 7 : R>g — RP are (locally) integrable boundary data,
while by : © — R™ P, by :  — RP are suitable smooth maps satisfying the rank
conditions
rank ([Dbg(u) - 7p41(u) |-+ -| Dbo(u) - rn(u)]) =n —p,
(1.8) ( ! () VueQ,
rank([Dby(w) - r1(u) |-+ | Dby(u) - rp(u)]) =p,

(1.7) t>0,

which guarantee the well-posedness of the corresponding initial-boundary value
problem for (1.1). Here, and throughout the paper, u(t,,(t)), ¢ = 0,1, must
be understood as the inner trace of the function u(¢,z) along the time-like curve

z = 1,(t).
In the present paper we are concerned with the effect of the boundary conditions

on the solution of (1.1) from the point of view of control theory. Namely, given a
fixed initial condition

(1.9) u(0,z) = ¢(x) z € J10(0), $1(0)[,

we assume that the evolution of the system can be affected by an external controller
acting through the boundary conditions, and we study the family of states that can
be attained, at least asymptotically, by the resulting solution. For example, we
may consider a gas confined in a cylinder with a moving piston at its top, ruled
(in the one-space dimensional setting) by the classical equations of isentropic gas
dynamics, the so-called p-system, that in Lagrangian coordinates reads

(1.10)

{@v—@w:@ t>0, z€]0,h[.

atw i azp(v) =0 )

Here, v denotes the specific volume, that is the inverse of the density, w is the
velocity of gas, and p(v) denotes the pressure, where p’ < 0, p” > 0, while h is the
height of the cylinder. We assume that we can exert a control on the speed of the
piston, which corresponds to consider the input control a(t) acting at the boundary
point z = h by means of the boundary condition

(1.11) w(t, h) = a(t) t>0,
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while the velocity of the gas is zero on the bottom of the cylinder, which yields
at £ = 0 the boundary condition

(1.12) w(t,0) =0 t>0.
Once is given an initial data
v(0,z) = v(z),
(1.13) _ z €]0,h[,
w(0,z) =w(z),

and any nearby constant state (v*,0), a natural question is wether we can find a
boundary control «(t) so that the corresponding solution t — (w(t,-),v(t,-)) of
(1.10)-(1.13) approaches (v*,0) as t — oo. If this problem has a positive answer we
will say that the system (1.10), with boundary conditions (1.11)-(1.12), is asymp-
totically boundary stabilizable near any constant state (v*,0).

Aim of the present paper is to study the boundary stabilizability problem for
a general strictly hyperbolic system of conservation laws (1.1) on the domain (1.2)
by means of controls acting only at one boundary point, say at the right end of the
interval D;. This corresponds to set v9p = 0 and 7, (t) = g(«a(t)) in (1.7), for some
smooth map g : R? — R?, and boundary input control a : R>o — RP. Thus, we
will consider the boundary conditions

bo (u(t, %o(t))) =0,
{m@mwmm)=mm0»
and we shall assume that the maps by, b1, g satisfy the rank conditions (1.8) and
(1.15) rank ([Dbo(u) - ry(u) |-+ | Dbo(u) - mp(w)]) =n—p Vue,
(1.16) rank (Dg(a)) =p  Va.

Here, because of (1.6), the full rank condition (1.16) guarantees that the total con-
trol on the boundary values is available at the right boundary = = (t), while
thanks to (1.15) one achieves the total control of the boundary values on the left
boundary z = vy (t) by means of waves that reach v after being generated at 1);.
Notice that (1.15) in particular implies p > n — p, i.e. the number of controllable
modes (that in this case is the number of characteristic speeds entering the domain
from the right boundary ;) must be larger than the number of the uncontrol-
lable ones (the characteristic speeds entering the domain from the left boundary
1o where there is no control). The main result of this paper shows that, under the
assumptions (1.8), (1.15), (1.16), the system (1.1) with characteristic speeds satis-
fying (1.4)-(1.6), and boundary conditions (1.14), can be asymptotically stabilized
to any equilibrium states u*, i.e. to all constant states u* that satisfy bo(u*) = 0,
starting with an initial condition ¢ with sufficiently small total variation and taking
values in a neighborhood of u*. The study of boundary control problems for con-
servation laws is motivated by applications to traffic low models, multicomponent
cromatography, electrophoresis, as well as in problems of oil reservoir simulation
and gas dynamics (as the one discussed in the above example).

(1.14) t>0,

We recall that in the case of hyperbolic systems of conservation laws, because
of the nonlinear dependence of the characteristic speeds \;(u) on the state vari-
able u, classical solutions may develop discontinuities (shock waves) in finite time,
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no matter of the regularity of the initial and boundary data. Hence, it is natu-
ral to investigate the boundary control problems for (1.1) within the context of
weak solutions in the sense of distributions. Moreover, for sake of uniqueness, we
shall consider weak solutions that are entropy admissible in the sense of Lax, i.e.
that satisfy an additional admissibility criterion, the classical Lax stability condi-
tion [Da, La], to single out the physical relevant discontinuities.

DEFINITION 1.1. A function u € L},.(D; R") is an entropy weak solution of
the initial-two-boundaries value problem (1.1), (1.7), (1.9) on D if the following
properties hold:

(1) the map t +— u(t,-) is continuous as a function from Rx( into L';
(2) u is a distributional solution to (1.1) on D in the sense that, for any smooth
function ¢ with compact support contained in I, there holds

Y1 (t)
/ / u(t z)pi(t, z) + F(ult, z))da(t, :L')] dzdt=0;
Yo(t)
(3) the initial condition (1.9) is fulfilled;
(4) for all except at most countably many ¢ > 0 there holds
1.17 lim  bo(u(t,z)) = vo(t), lim by (u(t,z)) =v1(t);
17 lim o bo(uta) =, | lm o b(u(ta) = n)
(5) at any point of jump discontinuity for u, the left and right limits u”
and uf, and the speed \ of the jump satisfy the inequalities

(1.18) Me(uF) > X > A (uf),
for some k € {1,...,n}.

‘We point out that several formulations of the hyperbolic boundary conditions
were considered in the literature (see [Am, JL, AB, Se|), but they all can be
expressed in the form (1.17) in the case of non-characteristic boundaries. For a
general account on the basic properties of weak solutions of conservation laws we
refer to [Br2].

Notice that, for scalar, convex conservation laws, and for Temple systems with
genuinely nonlinear characteristic fields, relying on the characterization of the at-
tainable states obtained in [AM1], [AMZ2], [AC] one can actually show that it
is possible to exactly reach a constant state in finite time with an entropy weak
solution whose total variation remains small for all times. On the contrary, by the
example provided in [BC] concerning a particular class of hyperbolic, genuinely
nonlinear systems (containing a model studied by Di Perna [Di] that describes the
isentropic evolution of a polytropic gas), one cannot expect to achieve, in general,
such a tipe of exact controllability results. Indeed, for the class of systems con-
sidered in [BC], there exist initial data which yield a solution that can never be
reduced to a constant since it presents a dense set of shock waves, generated by
subsequent interactions occuring in the domain D, that remain within D for all
times ¢ > 0, no matter which boundary data are assigned. Within the context of
weak solutions for general hyperbolic systems it is thus more appropriate to con-
sider instead the problem of asymptotic stabilization near a constant state. A first
result in this direction was obtained in [BC] where it is shown that, if total con-
trol on the boundary values is available at both boundary points, then a general
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system of conservation laws can asymptotically steer any initial condition ¢ with
sufficiently small total variation to all nearby constant state «*. In this case, since
one is assuming that all the components of the solutions entering from the bound-
aries can be assigned by the controller, the boundary controls can be arranged so
that no reflected waves ever enter the domain D from the boundaries 1, %1, and
thus the asymptotic stabilizability problem reduces to prove the existence of an
entropy weak solution u(t,-) of (1.1) defined on the domain D that satisifes the
initial condition ¢ and approaches u* as t — oco. Clearly, this argument fails when
we consider boundary stabilizability problems where the control acts only at one
boudary point as in (1.14). In this case the basic strategy to steer the system (1.1)
from a given initial state v’ at a time ¢’ to a (sufficiently close) equilibrium state u”
within some time ¢” consists: firstly, in using the controller acting on the right
boundary 1; to generate slow waves that cross transversally the domain D and
reflect on the left boundary 1y producing fast waves that reach, at a time t™ > ¢/,
an intermediate state u™ which is connected to u” solely by waves with negative
characteristic speeds; next, in using the controller to generate such slow waves en-
tering from v; so to reach the desired state u’ at a later time ¢t > t™. In effect,
since the system is nonlinear, the waves produced by the boundary control (“first
generation waves”) interact with each other generating new waves (“second gen-
eration waves”), and hence the solution u constructed in this way will not attain
exactly the terminal state w” within time ¢”. However, the complete control of the
boundary values along 1), guarantees that all such newly generated waves exit from
the domain I in finite time either reaching directly the right boundary %; (it is the
case of the second generation fronts with positive characteristic speeds), or hitting
1y after being reflected on the left boundary v (in the case of second generation
fronts with negative characteristic speeds). Therefore, the only wave-fronts that
can be present in the solution u at a (sufficiently large) time t” are those gener-
ated by further interactions occuring among the first and second order generation
waves, whose total strength is of quadratic order with respect to |u” — |, in such
a way that sup |u(t’,z) —u"| = O(1)-|u” —u'|?. Repeating inductively the same
€D,
procedure on a sequence of time intervals [t}, t}], ¥ > 1, we thus construct a bound-
ary control and, correspondingly, an entropy weak solution of (1.1), (1.7), which
satisfies the estimate sup |u(ty,z) —u"| = O(1) - |u” — u'|2k for all k, and hence
€D,
asymptotically drives the constant state u’ to the desired state u’.

We recall that, for systems (1.1) with genuinely nonlinear or linearly degener-
ate characteristic fields, in the case of initial and boundary data with small total
variation the existence of global entropy weak solution of the corresponding mixed
problem was established in a series of papers [Lil, Li2, Go, DG, ST] using
an adaptation of the Glimm scheme, and in [Am)] developing a front tracking al-
gorithm. More recently, the Lipschitz continuous dependence on the initial and
boundary data of entropy weak solutions constructed as limits of front tracking
approximations was obtained in [AC1] for systems of two equations and in [DM]
for n x n systems. All the results quoted so far, with the exception of [ST)], refer
to a mixed problem with a single boundary. An alternative method to establish
the well-posedness theory for the mixed problem was purseud in [AB, Sp] where
the existence and stability of entropy weak solutions was obtained via the study of
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viscous parabolic approximations 8;u+ 0, F(u) = ud2,u, as the viscosity coefficient
u — 0, both in the case of a general n x n system with a single boundary [AB],
and in the case of a system of two equations with two boundaries [Sp].

Towards the study of the boundary control problem (1.1), (1.14), in the present
paper we extend the well-posedness theory for n x n systems with genuinely non-
linear or linearly degenerate characteristic fields to the case of a domain with two
boundaries. Namely, for a closed set D C L (Dg; R™) xL! (R>; RP) x L1 (R>0; R™P)
of triples of functions with small total variation, we construct by a front tracking
algorithm a continuous flow

(119) (d’) Y0, ’71) = Et(¢y Yo, ’Yl) ) (¢a Yo, ’Yl) € D7 t> Oa

of entropy weak solutions of the mixed problem (1.1), (1.7), (1.9) that satisfy the
stability estimate
(1.20)

HEt (¢a 0, 71) —E; (3, 77\0,/'7\1) “Ll(Dc) < L[||¢ - $||L1(DO)+—XO:1”’YL - :Y\L“]Ll([(),t])} Vi,

for some positive constant L. Based on this result, and relying on [AC2], one
can then derive the uniqueness of solutions to the mixed problem showing that
any entropy weak solution of (1.1), (1.7), (1.9) must necessarily coincide with the
corresponding map u(t,z) = F¢($,v0,71)(z) induced by (1.19), provided that its
total variation does not grow too widly.

The proof of (1.20) is acheived following the same Lyapunov-type approach
firstly introduced by Liu and Yang [LY], and then developed in [BLY], to estab-
lish a stability estimate for solutions of the Cauchy problem, which consists in
constructing a functional I' = I'(u, u), equivalent to the L! distance, and almost
decreasing along pairs u, U of approximate solutions:

(1.21)  T(u(t,-),u(t,-)) —T(u(s,-),u(s,)) <O(1)-e(t—s) Vt>s>0,

(e being a parameter that controls the accuracy of the approximation). The con-
struction of a functional of this kind was recently carried out in [DM] for solutions
of a mixed problem with a single boundary, and is extended here to the case of an
initial-two-boundaries value problem.

The main source of thecnical difficulty determined by the presence of two
boundaries, both in providing a front tracking algorithm and in producing a func-
tional that satisfies (1.21), is the possible occurence of repeated reflections of wave-
fronts (or of small perturbations measuring the distance between two solutions),
bouncing back and forth between the two boundaries v, 17, that make increase
indefinitely their sizes. To overcome this problem, in proving the existence of front
tracking solutions defined for all times we shall assume that g, 11 satisfy a con-
traction condition quite similar to the one that was considered in [ST] to achieve
the construction of approximate solutions defined by a Glimm scheme. A stronger
assumption will be needed to obtain the estimate (1.21), which is analogous to the
condition assumed in [Le, LT] to ensure the stability of solutions in presence of
two large shocks.

The outline of the paper is the following. Section 2 contains the main assump-
tions on (1.1) and the boundary data, Section 5 is devoted to the well-posedness
theory, first with small BV data, and then for data with “large” total variation, in
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a sense that will be specified later. Finally, Section 6 illustrates the result regarding
the control problem.

2. Preliminaries and statements of the main results

2.1. Notations and basic definitions. In connection with the system (1.1),
for every u € Q let o — R;(o)[u] denote the i-th rarefaction curve through u, i.e.
the integral curve of the characteristic eigenvector r; with starting point u, so that

L Ri(o)l = ri(Re(@)l) s RalO)lu] =,

and denote o — S;(o)[u] the i-th Hugoniot curve through u, which is the the curve
of states that satisfy the Rankine-Hugoniot equations

(2.1) F(Si(o)[u]) — F(u) = \i(0)[u] [Si(0)(u) — ],

for some shock speed \;(o)[u], starting with S;(0)[u] = u. As it is well known
[La, LiY], the basic building block to construct general solutions of a system of
conservation laws is provided by the Riemann problems, i.e. by the initial value
problem and by the mixed problem where the data are piecewise constant with a
single jump. Since (1.1) has characteristic speeds satisfying either of the assump-
tions (1.4), (1.5), the solution of a (standard) Riemann problem at a point (7,§),
i.e. of a Cauchy problem with initial datum

ot if z<¢,
(22) u(r,2) = {uR if z>¢,

where uX, uf! € Q, is expressed in terms of the C? elementary curves (see [Br2,
Chapter 5])

R;(o)[u] it 0>0,
2.3 W,;(o)[u] = -
23) i@)lul {Si(o)[u] if 0<0.
Namely, it consists of n + 1 constant states u® = u” u!,...,u* = u®, and of n
elementary waves connecting every pair of adiacent states u’~!,u?, whose sizes
01,...,0, € R are uniquely determined by
(2.4) uft =Ty (on) 00 Wy (oy)[u?],

provided that |uf — u%| is sufficiently small. Each elementary wave will be ei-
ther a centered rarefaction wave (when o; > 0) or an admissible shock travelling
with speed A;(o;)[u*~!] (when o; < 0) in the case the i-th characteristic family
is genuinely nonlinear, while it is a contact discontinuity travelling with speed
Ai(ui™1) = \;(u?) in the linearly degenerate case.

Instead, the solution of a (right) boundary Riemann problem at a point (7, 41 (1),
i.e. of a mixed problem on the domain {(¢,z) | t > 7, z < %1(¢)} with constant
initial and boundary data
- u(t,z) =1 z <YP(71),
e {bl(u(t,wl(t»):v e,

where T € 1,5 € RP, according with [Go, Am] consists of p + 1 constant states

u® = w,ul,...,uP, connected by p elementary waves whose sizes oy, ...,0, are
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uniquely determined by
(2.6) 7 = b1 (Tp(0p) 0+ 0 Wi(01)(@)

provided that |y — b1 (@)| is sufficiently small. Such a solution coincides with the
restriction to the domain {(¢,z) | t > 7, z < ¥1(¢)} of the solution of the (standard)
Riemann problem at (7,%;(7), with initial states ul = @, uff = ¥,(gp) 0 --- 0
‘1/1(0' 1)(ﬂ)

Similarly, the (left) boundary Riemann problem on the domain {(t,z) | t >
T, ¢ > o(t)} with constant initial and boundary data

u(t,z) =7 x > Yo(T),
(2.7) _

bo(u(t,%o(t)) =7 t>,
where T € 2,7 € R"P, is solved by n — p elementary waves of sizes 0p41,...,0n
that connect n — p + 1 constant states uP,uP*!,... , u™ = %, and that are uniquely
determined by
(238) 7 = b (Tps1(0p41) 0+ 0 Un(0n)(@)) »

provided that |¥ — bo(@)| is sufficiently small. Such a solution is the restriction to
the domain {(t,z) | t > 7, £ > 1o (¢)} of the solution of the (standard) Riemann
problem with initial states ul = U, 1(0ps1) 0«0 Up(0y,) (), u? = 7.

To establish the existence of more general entropy weak solutions of the hyper-
bolic system (1.1) on the domain (1.2), we will implement a front tracking algo-
rithm which yields piecewise constant approximate solutions enjoying the properties
stated in the following

DEFINITION 2.1. Given € > 0, an initial condition ¢ € L!(Dy; R™), and a
pair of boundary data 7o € L} .(R>0; R"P), 71 € L}, .(R>0; RP), we say that a
continuous map

t — u(t,) € L}, (D R™) t>0,
is an e-approximate front tracking solution of the initial-two-boundaries value prob-
lem (1.1), (1.7), (1.9) if the followings hold.
(1) As a function of two variables u = u(t, ) is piecewise constant with dis-
continuities occurring along finitely many straight lines in the domain D.
Jumps can be of two types: physical wave-fronts (shocks, contact disconti-
nuities or rarefactions) and non-physical ones, denoted, respectively, as P
and N'P. Every interaction involves exactly two incoming fronts.
(2) Along each physical front £ = z,(t),a € P, the left and right limits
ul = u(t, o (t)—), u? = u(t,z4(t)+), are related by
(2.9) uf =y, (0a) U],
for some wave size o, and some characteristic family k, € {1,...,n}. In
the case the jump (u”,u®) is a rarefaction front of a genuinely nonlinear

family, one has 0 < o, < £. Moreover, the speed z, of the wave-front
satisfies

|£a — Ao (0a)uh]| < e if (u™,u™) is a shock

or a contact discontinuity,

|i:a — Ak, (uR)] <e if (u™,u") is a rarefaction front.
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(3) All non-physical fronts z = z,(t),a € N have the same speed
T = A,

where \ is a fixed constant strictly larger than all characteristic speeds,

ie.

(2.10) x> () Vi=1,...,n, VueQ.
Moreover, the total strength of all non-physical fronts in u(-, t) is uniformly
small, i.e.

(2.11) > Jult, za(t)+) — ult,za(t)-)| <e,  VE>0.

aeNP

(4) The initial and boundary values of u fulfill approximatively the initial and
boundary conditions, i.e.

(2.12) [u(0,-) — ¢l <,
(2.13) 1B (u(- () = llLe <€ ¢=0,1.

Throughout the paper, with a slight abuse of notation, we shall often call o a
wave of size o, and, if uff = Uy (0)[ul], we will say that (u’, uf?) is a (physical)
wave of size o of the k-th characteristic family. We shall define as |[u® — u”| the

size (and strength) of a non-physical front joining two states u”, u’.

Front tracking solutions of the mixed problem (1.1), (1.7), (1.9) are constructed
by piecing together several (approximate) solutions of Riemann problems that ei-
ther are generated by the jumps in some piecewise constant approximation of the
initial and boundary data, or arise at the interaction points between wave-fronts.
This construction can be carried out for all times provided that the corresponding
Riemann data remain close to each other, which is certainly guaranteed as long as
the total variation of the approximate solution remains uniformly small. To this
purpose, in presence of two boundaries we need to impose a contraction condition
on the boundary maps 1, ¥, so to prevent that repeated bouncings back and
forth between 7y and v; of wave-fronts could indefinitively increase their sizes.

BYV stability condition.
Counsider the (n — p) X p matrix

(2.14) MO(U) - [mgk(u’)] j=1l,...n—p"?
k=1,....p
and the p x (n — p) matrix
(2.15) M (u) = [m}k(u):ljzl ,,,,, "BEE.
k=1,....n—p

defined, for u € €2, by

i)

(2.16)  mOy(u) = 4 [Dbo(w) - 1 (w) || Dbo(u) - rn(u)]j_lDbo(u) ()

b

(1) = | [P ) 70+ D) 0] Dbaa) i)




