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Preface

The present book is the third and last book in a series of three:

1. Materials Processing during Casting, Wiley 2006
2. Physics of Functional Materials, Wiley 2008
3. Solidification and Crystallization Processing in Metals and Alloys, Wiley 2012

Solidification and Crystallization Processing in Metals and Alloys represents a deeper interpretation
of the solidification and crystallization processes than that treated in the book Materials Processing
during Casting, written for the undergraduate level. The aim of the present book is to analyze the
solidification and crystallization processes from a general point of view and in accordance with
generally accepted results and experimental evidence of modern research in the field. Hence, the book
does not treat applications on casting other than as occasional examples.

The book may be useful and suitable as a text book on courses at the Master and PhD level. The
mathematical level is not discouragingly high. Ordinary basic courses in Mathematics at university
level are enough. On the other hand, genuine knowledge of Physics is often required. The second
book, Physics of Functional Materials, or any other Physics book with any other equivalent content,
will cover this want for those who need it. Numerous citations to the second book are given in the
present book.

Solidification and Crystallization Processing in Metals and Alloys starts with a chapter of basic
thermodynamics. Chapter 1 is areview of the thermodynamics that later will be applied on metals and
alloys. It may be a tough and abstract introduction. Alternatively, it can be studied in connection with
later applications. Energy conditions play an important role for understanding the driving forces of
solidification processes in metals and alloys. These topics are treated in Chapter 2. The structure and
properties of interfaces between two phases and the nucleation of embryos and forming of stable
nuclei are closely related to crystallization processes. The basic outlines of these fields are given in
Chapters 3 and 4, respectively.

After these four basic and general chapters, Chapters 5 and 6 follow, where the mechanisms of the
solidification and crystallization processes in vapours and liquids are extensively discussed. Heat
transport during solidification processes is treated in Chapter 7, which also includes an orientation
about modern methods of thermal analysis. Chapter 8 deals with crystal growth controlled by heat
and mass transport.

The rest of the book is devoted to the structures of the solid phases that form during different types
of solidification processes, i.e. faceted and dendritic structures (Chapter 9), eutectic structures
(Chapter 10), peritectic structures (Chapter 11) and structure of Metallic Glasses (Chapter 12).

Solidification and Crystallization Processing in Metals and Alloys contains many solved examples
in the text and exercises for students at the end of each chapter. Answers to all the exercises are given
at the end of the book. In a ‘Guide to Exercises’ full solutions to all the exercises are given on the
Internet at http://www.wiley.com/go/fredriksson3
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2 Solidification and Crystallization Processing in Metals and Alloys

1.1 Introduction

Solidification or crystallization is a process where the atoms are transferred from the disordered
liquid state to the more ordered solid state. The rate of the crystallization process is described and
controlled by kinetic laws. These laws give information of the movements of the atoms during the
rearrangement. In most cases a driving force is involved that makes it possible to derive the rate of the
solidification process.

The aim of this book is to study the solidification processes in metals and alloys. The laws
of thermodynamics and other fundamental physical laws, which control the solidification, rule
these processes.

In this preparatory chapter the basic concepts and laws of thermodynamics are introduced.
They will be the tools in following chapters. In particular, this is true for the second chapter,
where the driving forces of solidification for pure metals and binary alloys are derived and
the relationship between energy curves of solid metals and metal melts and their phase diagrams
is emphasized.

1.2 Thermodynamic Concepts and Relationships
1.2.1 First Law of Thermodynamics. Principle of Conservation of Energy

One of the most fundamental laws of physics is the law of conservation of energy. So far, it is known
to be valid without any exceptions. When applied in thermodynamics it is called the first law of
thermodynamics and is written

Q=U+W (1.1)

where

Q = heat energy added to a closed system

U = the internal energy of the system or the sum of the kinetic and potential energies of
the atoms

W = work done by the system.

Differentiating Equation (1.1) gives the relationship
dQ = dU +dW = dU + pdV (1.2)
The added heat dQ is used for the increase dU of the internal energy of the system and for the

external work pdV against the surrounding pressure p when the volume of the system increases by
the amount dV.

1.2.2 Enthalpy
The enthalpy of a closed system is defined as

H=U+pV (1.3)
The enthalpy H can be described as the ‘heat content’ of the system. In the absence of phase

transformations we have

i
H= JndeT (1.4)
0
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where
H = enthalpy of the system
n = number of kmol

C, = molar heat capacity of the system (J/kmol).

When the heat content of a system is changed the enthalpy changes by the amount AH. When the
system absorbs heat from the surroundings the heat content of the system is increased and AH
is positive.
When the system emits heat to the surroundings and reduces its heat content, AH is negative.
The amount of heat absorbed by the surroundings is (—AH), which is a positive quantity.
Differentiating Equation (1.3) gives

dH = dU + pdV + Vdp (1.5)
By use of Equation (1.2) we obtain
dH =dQ+ Vdp
At constant pressure, the heat absorbed by a system equals its enthalpy increase:
(dH), = (dQ), (1.6)

1.2.3 Second Law of Thermodynamics. Entropy
Second Law of Thermodynamics

By experience it is known that heat always is transferred spontaneously from a warmer to a colder
body, never the contrary.

Itis possible to transfer heat into mechanical work but never to 100%. Consider a closed system (no
energy exchange with the surroundings) which consists of an engine in contact with two heat
reservoirs. If an amount Q, of heat is emitted from reservoir 1 at a temperature 7 to the engine and an
amount Q, of heat is absorbed by reservoir 2 at temperature 75, the energy difference Q; — Q, is
transferred into mechanical work in the ideal case.

The reversed process is shown in Figure 1.1. It can be described as follows.

¢ Heat can be transferred from a colder body to a warmer body only if work or energy is supplied.

This is one of many ways to express the second law of thermodynamics.

In practice, heat is transferred into mechanical work in heat engines. The process in such a machine
can theoretically be described by the Carnot cycle (Figure 1.2a). Fuel is burned and the combustion
gas runs through the following cycle in the engine

1. The gas absorbs the amount Q, of heat and expands isothermally at temperature 7;.

2. The gas expands adiabatically. The temperature decreases from 7, to 7>.

3. The gas is compressed isothermally at temperature 7> and emits the amount Q, of heat.
4. The gas is compressed adiabatically. The temperature changes from 7> back to 7.

Calculations of the expansion and compression works show that

o_1

0, T (1:7)

T,

9

Engine
Iz
T,

—W=0-0,

Figure 1.1 Engine in contact with
two heat reservoirs. 7, > T>. The
energy law gives Q) = Q, + W.

Figure 1.2a The Carnot cycle.
The enclosed area represents the
work done by the heat engine dur-
ing a cycle.

3
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T, T,
Figure 1.2b The Carnot cycle.
The enclosed area represents the
work done by the heat engine dur-
ing a cycle.

npyV, 1 00V,
ap

PV rVy
tap

In the ideal case, the efficiency n of the Carnot cycle is

O~ I~ Iy
'r’_ =

0, T (1.8)

Entropy

A very useful and important quantity in thermodynamics is the entropy S. Entropy is defined by the
relationship

_40
ds = — (1.9)

As an example we represent the Carnot cycle in a 7§ diagram (Figure 1.2b). Horizontal lines
represent the isothermal expansion and compression. The vertical lines illustrate the adiabatic steps
of the cycle. The area of the rectangle equals the work done by the gas. A reversible adiabatic process
is also called isentropic.

Entropy Change at an Isothermal Irreversible Expansion of a Gas
In many solidification processes the entropy change is of great interest. As a first example we will
consider the isothermal, irreversible expansion of an ideal gas and calculate the entropy change.

Example 1.1

Calculate the change in entropy when n kmol of an ideal gas with the pressure p, and the volume V,
expands irreversibly to the volume V, 4 V; in the way shown in the figure.

Solution:

There are no forces between the molecules in the gas and therefore there is no change of internal
energy when the gas expands. No change of internal energy means no temperature change.

When the tap is opened, the gas expands isothermally from volume V, to V; + V5. The first law of
thermodynamics and the definition of entropy give

Vi+Vs
Aszjg‘l: [ oy (1)
T T
Vi

Using the general gas law pV = nRT to eliminate 7" we obtain

Vi+ Vs d
[ nRdV Vi+ Vs,
AS = =nR1 = 2
J v nR In v, (2°)
Vi
Vi+V,

Answer: The entropy increases by the amount nR In L
1

The final state in Example 1.1 is far more likely than the initial state. When the tap is opened the
molecules move into the empty container until the pressures in the two containers are equal rather
than that no change at all occurs. Hence, the system changes spontaneously from one state to another,
more likely state and the entropy increases.
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All experience shows that the result in Example 1.1 can be generally applied. The following
statements are generally valid:

e If a process is reversible the entropy change is zero.
AS = 0.
e The entropy increases in all irreversible processes.

AS > 0.

Entropy of Mixtures

Entropy Change at Mixing Two Gases
As a second example of deriving entropy changes we will calculate the entropy change when two

gases mix.

Example 1.2

A short tube and a closed tap connect two gases A and B of equal pressures, each in a separate closed

container. When the tap is opened the two gases mix irreversibly. No changes in pressure and ma P ¥y o ng P Va

temperature are observed.
Calculate the total change of entropy as a function of the initial pressure p and the final partial
pressures when the two gases mix. The data of the gases are given in the figure.

n = number of kmol

p = pressure

V = volume

The temperature 7 is constant.

Solution:

When the tap is opened the two gases mix by diffusion. The diffusion goes on until the composition of

the gas is homogeneous. It is far more likely that the gases mix by diffusion than that the gases remain E:;?:‘\ Pat Py

separate. Hence, the total entropy change is expected to be positive. After the d“«fusionpthe gases are
In a gas, the distances between the molecules are large and the interaction between them can be mixed and the pressure is equal in

neglected. Thediffusion of each gasisindependentof the other. The total entropy change can be regarded the two containers. The
as the sum of the entropy change of each gas after its separate diffusion from one containerinto the other. TRIRpRRITS £ Jseonsm;

ASmix _ Asxix _I_ASré]ix (l/)

n kmol of gas A change their pressure from p to p o where p 4 isits final partial pressure. In the same way
ng kmol of gas B change their pressure from p to pg.
The initial pressure and the final total pressure are equal as no pressure change is observed.

P =DPA+DsB (2)

Using the result of Example 1.1 we obtain

; Vi+V,
AS™* — psRIn— i (3)
1
and
; Vi+V;
ASD™ = ngRIn "2 (4"
2
The partial pressures can be calculated with the aid of Boyle’s law applied on each gas:
pVi=pa(Vi+V2) (5')

and

pV2=pp(Vi+V2) (6)
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The ratio of the volumes from Equations (5") and (6) are inserted into Equations (3") and (4’) and we

obtain
ASK"‘ =nsR lnL (7')
PA
and
mix __ P /
ASE™ = ngRIn— (8)
PB
The total entropy change is
mix __ mix mix __ V4 P /
S™ = AS™ 4+ ASE"™ = naRIn— + ngRIn— 9"
PA PB

The ratio of the pressures is >1 and the entropy change is therefore positive, as predicted
above.

Answer: The total entropy change when the gases mix is

nAR L +nBRln£. where p = pa +ps.
PA PB

Entropy Change at Mixing Two Liquids or Solids
Diffusion occurs not only in gases but also in liquids and solids. The entropy change AS™* or simply
$™X owing to mixing of two compounds in a melt or a solid can be calculated if we make a minor
modification of Equation (9') in Example 1.2.

Instead of the partial pressures of the two gases we introduce the mole fractions x, and xp:

X = _Pa and xp = - .
PA +DPB PA+PB
Equation (9') can then be written as
SMX — _ naARInxs —ngR Inxp (1.10)

By use of the relationship n = na + ng where n is the total number of kmole we obtain

S™X — — nR(xalnxa + xplnxp) (1.11)
The molar entropy of mixing will then be

Smi" = — R(xalnxa + xglnxp) (1.12)

Equations (1.11) and (1.12) are directly applicable on mixtures of gases but also on liquids and solids.
These applications will be discussed later.

Entropy and Probability
The two examples given above indicate that entropy in some way is related to probability. The
probability function can be found by the following arguments.

Consider N molecules in a container with the volume V (Figure 1.3). The molecules do not
interact at all. Each molecule is free to move within the volume V. The probability of finding it
within a unit volume is the same everywhere. Hence the probability of finding a molecule within a
volume V, is V,/V. The probability of finding two molecules within the same volume V; equals the
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product of their probabilities (V,/V)”. The probability of finding N molecules within a particular
volume V; is (V/V)".

Equation (2') in Example 1.1 on page 4 and Equation (9") on page 6 give us the clue to relating
entropy and probability. We have seen above that the overall probability is the product of the
probabilities of independent events. We also know that the entropy of two systems is the sum of their
entropies. It is striking that the logarithmic function converts the multiplicative property of
probability to the additive property of entropy.

These arguments led the physicists Maxwell and Boltzmann in 1877 to suggest a relationship
between entropy and probability. Boltzmann interpreted entropy as a measure of the order, or rather
disorder, of a system. The more probable a state of a system is and the greater its disorder is, the
higher will be its entropy.

Boltzmann derived an alternative expression of entropy by using statistical thermodynamics.

S = kgln P (1.13)

where
kg = Boltzmann’s constant
P = probability of the state.

Equation (1.13) is the fundamental relationship between entropy and probability. P is called the
statistical weight of the state, i.e. its configuration.

Consider a binary system, a gas or a liquid, of two components B and C. Ng atoms of B and N atoms
of C are arranged at random among N = Ny + N sites. This can be done in many different ways and
is equivalent to mixing the two components. The statistical weight P is the number of alternative ways
to arrange the B and C atoms among the N sites. Statistical considerations give the result

N! N!

P=———=
Ns!Nc! — Ng!(N — Np)!

(1.14)
We use Stirling’s formula

limN! — V2t NV 712N when n—

for the very high numbers N, Ng and Nc =N — Np and obtain

NN+1/2 e—N
P (1.15)
Ng/3+I/Z(N_NB)N—NB+|/26—NBe—(N‘NB)

The last factor in Equation (1.15) is equal to 1. The term 1/2 in the exponents can be neglected in
comparison with N and Ng. Taking the logarithm of both sides of Equation (1.15) we obtain

InP = NInN — NglnNg — (N — Ng)In(N — Ng) (1.16)
If we introduce the mole fractions

X .. and x —N_NB
B =y Xc =

and the relationship xp +xc = 1

Equation (1.16) can, after some calculations, be transformed into
InP = N(— xp Inxg — xc Inxc) (1.17)

Instead of N we introduce 7, the number of kmol with the aid of the relationship:

N

n=—
Na

(1.18)

7

Vi

Figure 1.3 Volume element.



