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VERIFICATION AND VALIDATION IN
SCIENTIFIC COMPUTING

Advances in scientific computing have made modeling and simulation an important part
of the decision-making process in engineering, science, and public policy. This book
provides a comprehensive and systematic development of the basic concepts, principles,
and procedures for verification and validation of models and simulations. The emphasis
is placed on models that are described by partial differential and integral equations and
the simulations that result from their numerical solution. The methods described can be
applied to a wide range of technical fields, such as the physical sciences, engineering, and
technology, as well as to a wide range of applications in industry, environmental regulations
and safety, product and plant safety, financial investing, and governmental regulations.
This book will be genuinely welcomed by researchers, practitioners, and decision-makers
in a broad range of fields who seek to improve the credibility and reliability of simulation
results. It will also be appropriate for either university courses or independent study.

WILLIAM L. OBERKAMPF has 39 years of experience in research and development in
fluid dynamics, heat transfer, flight dynamics, and solid mechanics. He has worked in both
computational and experimental areas, and taught 30 short courses in the field of verification
and validation. He recently retired as a Distinguished Member of the Technical Staff at
Sandia National Laboratories.

CHRISTOPHER J. ROY is an Associate Professor in the Aerospace and Ocean Engineering
Department at Virginia Tech. After receiving his PhD from North Carolina State University
in 1998, he spent five years working as a Senior Member of the Technical Staff at Sandia
National Laboratories. He has published numerous articles on verification and validation
in the area of computational fluid dynamics. In 2006, he received a Presidential Early
Career Award for Scientists and Engineers for his work on verification and validation in
computational science and engineering.
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Preface

Modeling and simulation are used in a myriad of ways in business and government. The
range covers science, engineering and technology, industry, environmental regulations and
safety, product and plant safety, financial investing, design of military systems, govern-
mental planning, and many more. In all of these activities models are built that are mental
constructs of how we believe the activity functions and how it is influenced by events
or surroundings. All models are abstractions of the real activity that are based on many
different types of approximation. These models are then programmed for execution on a
digital computer, and the computer produces a simulation result. The simulation result may
have high fidelity to the actual activity of interest, or it may be complete nonsense. The
question is: how can we tell which is which? This book deals with various technical and
procedural tools that can be used to assess the fidelity of modeling and simulation aspects
of scientific computing. Our focus is on physical processes and systems in a broad range
of the natural sciences and engineering.

The tools discussed here are primarily focused on mathematical models that are repre-
sented by differential and/or integral equations. Many of these mathematical models occur
in physics, chemistry, astronomy, Earth sciences, and engineering, but they also occur in
other fields of modeling and simulation. The topics addressed in this book are all related to
the principles involved in assessing the credibility of the models and the simulation results.
We do not deal with the specific details of modeling the physical process or system of inter-
est, but with assessment procedures relating to the fidelity of the models and simulations.
These procedures are typically described by the terms verification and validation.

We present the state of the art in verification and validation of mathematical models
and scientific computing simulations. Although we will discuss the terminology in detail,
verification can simply be described as “solving the equations right” and validation as
“solving the right equations.” Verification and validation (V&YV) are built on the concept
of quantitative accuracy assessment. V&V do not answer the entire question of simulation
credibility, but they are key contributors. V&V could be described as the processes that
provide evidence of the correctness and/or accuracy of computational results. To measure
correctness, one must have accurate benchmarks or reference values with which to compare.
However, the majority of simulations of complex processes do not have a computable or
measurable reference value. For these situations we must rely on numerical error estimation

Xi



xii Preface

and estimation of the effects of all of the contributors to uncertainty in system responses.
In verification, the primary benchmarks are highly accurate solutions to specific, although
limited, mathematical models. In validation, the benchmarks are high-quality experimental
measurements of system response quantities of interest. These experimental measurements,
and the detailed information of the system being tested, should also have carefully estimated
uncertainty in all of the quantities that are needed to perform a simulation of the experiment.

Mathematical models are built and programmed into software for the purpose of making
predictions of system responses for cases where we do not have experimental data. We refer
to this step as prediction. Since prediction is the usual goal of modeling and simulation,
we discuss how accuracy assessment results from V&V activities enter into prediction
uncertainty. We discuss methods for including the estimated numerical errors from the
solution of the differential and/or integral equations into the prediction result. We review
methods dealing with model input uncertainty and we present one approach for including
estimated model uncertainty into the prediction result. The topic of how to incorporate
the outcomes of V&V processes into prediction uncertainty is an active area of current
research.

Because the field of V&V for models and simulations is in the early development stage,
this book does not simply provide a prescriptive list of steps to be followed. The procedures
and techniques presented will apply in the majority of cases, but there remain many open
research issues. For example, there are times where we point out that some procedures may
not be reliable, may simply not work, or may yield misleading results.

As the impact of modeling and simulation has rapidly increased during the last two
decades, the interest in V&V has also increased. Although various techniques and proce-
dures have been developed in V&YV, the philosophical foundation of the field is skepticism.
Stated differently, if the evidence for computer code correctness, numerical error esti-
mation, and model accuracy assessment are not presented as part of a prediction, then
the V&V perspective presumes these activities were not done and the results should be
questioned. We feel this is the appropriate counter balance to commonly unsubstantiated
claims of accuracy made by modeling and simulation. As humankind steadily moves from
decision making primarily based on system testing to decision making based more heavily
on modeling and simulation, increased prudence and caution are in order.
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1

Introduction

This chapter briefly sketches the historical beginnings of modeling and simulation (M&S).
Although claiming the beginning of anything is simply a matter of convenience, we will
start with the stunning invention of calculus. We then discuss how the steadily increas-
ing performance and decreasing costs of computing have been another critical driver in
advancing M&S. Contributors to the credibility of M&S are discussed, and the preliminary
concepts of verification and validation are mentioned. We close the chapter with an outline
of the book and suggest how the book might be used by students and professionals.

1.1 Historical and modern role of modeling and simulation
1.1.1 Historical role of modeling and simulation

For centuries, the primary method for designing an engineered system has been to improve
the successful design of an existing system incrementally. During and after the system was
built, it would be gradually tested in a number of ways. The first tests would usually be done
during the building process in order to begin to understand the characteristics and responses
of the new system. This new system was commonly a change in the old system’s geometrical
character, materials, fastening techniques, or assembly techniques, or a combination of all
of these changes. If the system was intended to be used in some new environment such as a
longer bridge span, a taller structure, or propelled at higher speeds, the system was always
tested first in environments where the experience base already existed. Often, during the
building and testing process, design or assembly weaknesses and flaws were discovered and
modifications to the system were made. Sometimes a catastrophic failure of a monumental
project would occur and the process would start over: occasionally after attending the
funeral of the previous chief designer and his apprentices (DeCamp, 1995). In ancient
times, chief designers understood the consequences of a major design failure; they had skin
in the game.

After the invention of calculus by Newton and Leibniz around 1700, the mathematical
modeling of physics slowly began to have an impact on concepts for the understanding of
nature and the design of engineered systems. The second key ingredient to have an impact
on mathematical physics was the invention of logarithms by John Napier about 1594 (Kirby
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etal., 1956). A mathematical model is of little practical use until it is exercised, which today
is referred to as obtaining a simulation result. Until the existence and use of logarithms, it
was not practical to conduct simulations on a routine basis. Then, not long after the invention
of logarithms, the slide rule was invented by William Oughtred. This device provided a
mechanical method for adding and subtracting logarithms and enabling rapid multiplication
and division of numbers. The slide rule and mechanical calculators revolutionized not only
simulation, but also such fields as surveying, navigation, and astronomy. Even though by
today’s standards the combination of mathematical theory and computing machines would
be called “Before Computers,” it provided the opportunity for the beginning of massive
changes in science, engineering, and technology.

Starting with the Industrial Revolution, roughly around 1800 in England, the impact
of modeling and simulation on engineering and design began to grow rapidly. However,
during the Industrial Revolution, M&S was always an adjunct to experimentation and
testing of engineered systems, always playing a minor support role. The primary reason
for this was that computations were typically done by hand on a slide rule or mechanical
calculator. By the early 1960s, programmable digital computers began to appear in a wide
number of industrial, academic, and governmental organizations. During this time period,
the number of arithmetic calculations commonly done for a simulation grew from hundreds
or thousands to millions of calculations. It would be reasonable to identify the 1960s as the
beginning of widespread scientific computing. In this book, we restrict the term scientific
computing to the numerical solution of models given by partial differential equations
(PDESs) or integro-differential equations. During the 1960s, computer power reached the
level where scientific computing began to have a significant effect on the design and
decision making of engineered systems, particularly aerospace and military systems. It
is appropriate to view scientific computing as a field within the broader topic of M&S,
which today includes systems that would have, for example, fundamental involvement with
human behavior, such as economic and investment modeling, and individual and social
modeling.

There were a few important exceptions, such as nuclear weapons design in the US, where
scientific computing began to significantly influence designs in the 1940s and 1950s. The
initial impetus for building much faster computers was the Cold War between the US and
the Soviet Union. (See Edwards, 1997 for a perspective of the early history of electronic
computing and their influence.) M&S activities were primarily modeling activities in the
sense that models were simplified until it was realistic to obtain simulation results in an
acceptable time period so as to have an impact on the design of a system or research activity.
Relative to today’s standards, these were extremely simplified models because there was
relatively minimal computing power. This in no way denigrates the M&S conducted during
the 1940s or the century before. Indeed, one could convincingly argue that the M&S
conducted before the 1960s was more creative and insightful than present day scientific
computing because the modeler had to sort carefully through what was physically and
mathematically important to decide what could be ignored. This took great understanding,
skill, and experience regarding the physics involved in the system of interest.
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One of the most stunning scientific computing articles to appear during the 1960s was
“Computer Experiments in Fluid Dynamics™ by Harlow and Fromm (1965). This article,
probably more than any other, planted the seed that scientific computing should be thought
of as the third pillar of science, along with theory and experiment. During the 1970s and
80s, many traditionalists strongly resisted this suggestion, but that resistance faded as the
power of scientific computing became dominant in advancing science and engineering. It
is now widely accepted that scientific computing does indeed provide the third pillar of
science and engineering and that it has its own unique strengths and weaknesses.

From a historical perspective, it should be recognized that we are only beginning to
build this third pillar. One could argue that the pillar of experiment and measurement has
been built, tested, and continually refined since the beginning of the Italian Renaissance
in the 1400s. One could also argue that this pillar has much earlier historical roots with
the Mesopotamian, Egyptian, Babylonian, and Indus Valley civilizations. The pillar of
theory, i.e., theoretical physics, has been built, tested, and refined since the late 1700s.
Understanding the strengths and weaknesses of each of these pillars has not come without
major controversies. For example, the importance of uncertainty estimation in experimental
measurements, particularly the importance of using different measurement techniques, is
well understood and documented. History has shown, even in modern times, the bitter and
sometimes destructive debates that occur when there is a paradigm shift, e.g., the shift
from Newtonian mechanics to relativistic mechanics. In a century or so, when present day
human egos and organizational and national agendas have faded, science and engineering
will admit that the pillar of scientific computing is just now beginning to be constructed. By
this we mean that the weaknesses and failings of all the elements contributing to scientific
computing are beginning to be better understood. More importantly, the weaknesses and
failings are often simply ignored in the quest for publicity and grabbing media headlines.
However, we must learn to balance this youthful enthusiasm and naiveté with the centuries
of experience and errors encountered during the building of the pillars of experiment and
theory.

1.1.2 Changing role of scientific computing in engineering

1.1.2.1 Changing role of scientific computing in design, performance and
safety of engineering systems
The capability and impact of scientific computing has increased at an astounding pace. For
example, scientific simulations that were published in research journals in the 1990s are
now given as homework problems in graduate courses. In a similar vein, what was at the
competitive leading edge in scientific computing applied to engineering system design in
the 1990s is now common design practice in industry. The impact of scientific computing
has also increased with regard to helping designers and project managers improve their
decision making, as well as in the assessment of the safety and reliability of manufactured
products and public works projects. During most of this scientific computing revolution,
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system design and development were based primarily on testing and experience in the
operating environment of the system, while scientific computing was commonly a secondary
contributor in both preliminary and final design. For example, if there was some type of
system failure, malfunction, or manufacturing issue that could not be solved quickly by
testing, scientific computing was frequently called on for assistance and insight. Another
common mode for the use of scientific computing was to reduce the number of design-then-
test-then-redesign iterations that were needed for a product to perform better than competing
products or to meet reliability or safety requirements. Specialized mathematical models for
components or features of components were commonly constructed to better understand
specific performance issues, flaws, or sensitivities of the components. For example, models
were made to study the effect of joint stiffness and damping on structural response modes.
Similarly, specialized mathematical models were built so that certain impractical, expensive,
or restricted tests could be eliminated. Some examples were tests of high-speed entry of a
space probe into the atmosphere of another planet or the structural failure of a full-scale
containment vessel of a nuclear power plant.

As scientific computing steadily moves from a supporting role to a leading role in
engineering system design and evaluation, new terminology has been introduced. Termi-
nology such as virtual prototyping and virtual testing is now being used in engineering
development to describe scientific computing used in the evaluation and “testing” of new
components and subsystems, and even entire systems. As is common in the marketing
of anything new, there is a modicum of truth to this terminology. For relatively simple
components, manufacturing processes, or low-consequence systems, such as many con-
sumer products, virtual prototyping can greatly reduce the time to market of new products.
However, for complex, high-performance systems, such as gas turbine engines, commer-
cial and military aircraft, and rocket engines, these systems continue to go through a
long and careful development process based on testing, modification, and retesting. For
these complex systems it would be fair to say that scientific computing plays a supporting
role.

The trend toward using scientific computing more substantially in engineering systems
is driven by increased competition in many markets, particularly aircraft, automobiles,
propulsion systems, military systems, and systems for the exploration for oil and gas
deposits. The need to decrease the time and cost of bringing products to market is intense.
For example, scientific computing is relied on to reduce the high cost and time required
to test components, subsystems, and complete systems. In addition, scientific computing
is used in the highly industrialized nations of the world, e.g., the US, European Union,
and Japan, to improve automated manufacturing processes. The industrialized nations
increasingly rely on scientific computing to improve their competitiveness against nations
that have much lower labor costs.

The safety aspects of products or systems also represent an important, sometimes dom-
inant, element of both scientific computing and testing. The potential legal and liability
costs of hardware failures can be staggering to a company, the environment, or the public.



