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Preface

To some extent, design of materials has long been a preoccupation of materials scientists and
engineers. However, the historical emphasis on laborious, intuitive, serendipitous materials
discovery has only relatively recently been augmented by computer simulations. This speeds
up discovery of new material solutions, as well as more rapidly assessing
process-structure-property relations upon which modern materials science is based.

Fueled by the recent emergence and rapid growth of computational methods, a materials
design revolution is underway in which the classical materials selection approach is replaced
by the simulation-based design of material microstructure or mesostructure to satisfy multiple
performance requirements of the component or system, subject to constraints on certain
material properties and other aspects of the system.

Materials typically used in applications today have complex, heterogeneous microstructures
with different characteristic length scales, and these microstructures affect processing,
manufacture, and in-service performance. In the past fifty years, research in theory of
dislocations, phase transformations, and micromechanics of heterogeneous materials enabled
explicit consideration of the role of microstructure on the properties of metallic systems and
certain classes of composites. Pivotal to progress in the present materials design revolution
are the works of Olson (Olson 1997) on combining elements of reductionist, bottom-up
modeling with deductionist, top-down systems design of materials. The perspective of a
material as a complex hierarchical system is instrumental in drawing analogy to subsystems
and components considered in conventional design. Moreover, the contribution of Ashby
and coworkers (Ashby 1999) regarding systematic definition and execution of the materials
selection problem for various performance requirements is acknowledged as foundational to
relating properties to performance.

The core of materials design is the interplay of hierarchical systems-based design of materials
and multiscale/multilevel modeling methodologies, embedded within a computational
framework that supports coordination of information and human decision making. We add to
these developments elements of decision-based robust design of engineering systems. Why?
In spite of great advances in material modeling and simulation, from atomic scales upward,
these approaches have inherent uncertainty when it comes to predicting the properties
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of “real” materials; moreover, there are gaps of nearly intractable nature in methods for
concurrent bridging of length and time scales in modeling material processing, deformation,
and failure. While emerging high-performance computing and related simulation tools
provide a more predictive foundation to support materials design, brute force methods

based on atomistics or concurrent multiscale modeling are unlikely to have sufficient
capabilities, combined with issues such as tractability and uncertainty, to support a broad
range of materials design problems. A systems approach is required to address the nonlinear,
hierarchical nature of real materials. Such an approach has proven to be beneficial for design
of other complex systems (e.g., aircraft, automobiles, circuit boards, etc.).

Systems-based engineering design principles have developed substantially in the last few
decades. An October 1998 workshop on materials design science and engineering (McDowell
and Story 1998), sponsored by the National Science Foundation and cohosted by Georgia
Tech and Morehouse College, was held to discuss interdisciplinary frameworks necessary to
facilitate concurrent design of materials and products, and to replace ‘“‘hit and miss” materials
discovery with systematic methods for materials development that draw on combined
elements of materials characterization and computational simulation. This is driven by an
inexorable technology pull by the marketplace toward rapid development cycles for new

and improved materials. Potential benefits include a virtual manufacturing environment that
goes well beyond geometric modeling to include many aspects of the physical behavior of
materials in simulating system-level response. Moreover, tailoring materials to enhance the
performance envelope is an imperative as we consider future requirements for increasing
efficiency and environmentally sustainable solutions, for example. This workshop noted

that a change of culture is necessary in universities and industries to cultivate new concepts
for materials design. The resulting roadmap for materials design focused on the following
foundational technologies:

» Principles and approaches for more quantitative materials design.
¢ Enhanced modeling and simulation tools.
e Validated, reliable, and comprehensive databases.

e Methods for in situ characterization and testing.

In this book, we address the first bullet in the previous list, namely, systems strategies

for concurrent robust design of materials and systems, along with elements of distributed
modeling and simulation environments. Materials design falls under the general category of
simulation-based design, in which computational materials science and multiscale mechanics
modeling play key roles in evaluating performance metrics necessary to support materials
design. Major findings of the May 2006 Report of the U.S. National Science Foundation Blue
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Ribbon Panel on Simulation-Based Engineering Science (SBES) (Oden, Belytschko et al.
2006) can be summarized as follows:

* “SBES is a discipline indispensable to the nation’s continued leadership in science
and engineering...

* Formidable challenges stand in the way of progress in SBES research. These
challenges involve resolving open problems associated with multiscale and multi-
physics modeling, real-time integration of simulation methods with measurement
systems, model validation and verification, handling large data, and visualization...”

The materials design approach advocated here invokes the notion of robust design,

i.e., insensitivity of the desired response to any number of sources of uncertainty or variability
having to do with material composition, processing, microstructure, service history, models,
and model parameters, coupling of models at different length and/or time scales, chaining

of design decisions or simulation outputs/inputs, etc. In many respects, it is a manifestation
of SBES. To address robust design of materials, we have developed new concepts that extend
existing methods and facilitate top-down design in the presence of complexity and uncertainty
that is characteristic of hierarchical material systems.

Figure P.1 encompasses the goals of concurrent material and product design, showing that
already established methods of design-for-manufacture of parts, subassemblies, assemblies,
and overall systems can be extended to address the multiple scales that control property-
performance attributes of materials. Hence, the objective of tailoring the material to specific
applications (to the left of the vertical bar in Figure P.1) is patently distinct from traditional
materials selection that is common in practice. The problem is that the systems-based design
methods used to design parts, components, and assemblies must be extended to consider the
nuances of process-structure-property relationships in materials in the presence of significant
uncertainty. The hierarchy of scales from quantum to continuum on the left side of Figure
P.1 may be viewed as a multiscale modeling problem, but this is a reductionist, bottom-up
perspective. The materials design challenge is to develop methods that employ bottom-up
modeling and simulation, calibrated and validated by characterization and measurement to
the extent possible, yet permit top-down design over the hierarchy of material length scales
shown in Figure P.1.

Our intention in this book is to provide a connection between several key primary
disciplines or endeavors that have been traditionally distinct but naturally combine to

serve as the foundation of modern materials design: (1) systems-based engineering design,
(2) computational materials science and engineering, (3) robust systems design, and (4)
information technology. It is targeted to serve as a useful reference in emerging methods for
concurrent design of materials and products for product designers, materials scientists and
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<==== Concurrent materials and product design ===
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Figure P.1 Hierarchy of levels from atomic scale to system level in concurrent materials and
product design. Existing systems design methods focus on levels to the right of the
vertical bar, treating the materials design by selecting the material.

engineers, applied mechanics researchers, and other analysts involved in multiscale modeling
of material behavior and associated process-structure-property relations.

The reader may find that the premise behind this book—that materials can be designed
concurrently with products—is not the usual way of doing business in many organizations
that traditionally separate the functions of materials development from systems design along
organizational lines, using material properties as the mode of communication/information
exchange. It also differs from the way design is taught in most engineering programs,
including materials science and engineering. Indeed, the ideas presented here represent

our long-term prospectus for how this might be done in the “near tomorrow” as computing
power increases, engineering becomes increasingly multidisciplinary, multi-resolution, and
multiscale material modeling methods blossom, and systems approaches that emerge from the
engineering design, multidisciplinary optimization, and information sciences communities
become a part of the engineering lexicon. To this end, we look toward the horizon beyond the
current state of the curriculum, university disciplinary structures, or management of design
processes in industry. We trust that the initial, embryonic ideas presented here will serve as

an impetus for the students of today and technology leaders of tomorrow in various aspects of
materials engineering and product development to consider the richness of opportunities that
lie ahead in a digital, highly connected world.

In this book, we incorporate ideas and material from the dissertations of three former doctoral
students in the Systems Realization Laboratory at Georgia Tech—Carolyn Conner Seepersad,



Preface xiii

HaelJin Choi, and Jitesh Panchal. In addition, we have all benefited from the rich interactions
among students and faculty in the Systems Realization Laboratory. At the peril of omitting
some names, we acknowledge Wei Chen (Northwestern University), Tim Simpson (Penn
State University), and Kemper Lewis (University of Buffalo), whose doctoral work at Georgia
Tech has had a major impact on the material presented herein. In addition, several graduate
students and postdoctoral fellows in mechanics of materials at Georgia Tech have contributed
substantially to the formative stages of this work. These include doctoral students Ryan
Austin and Jim Shepherd, who provided essential framing of computational mechanics
issues and codes that contributed to several materials design scenarios presented here as
examples, as well as postdocs Aijun Wang and Rajesh Kumar, who developed valuable
analysis tools and methods for use in cellular materials design problems.

Pursuit of many of the concepts outlined in this book received financial support from several
sources. Concepts for robust design of materials were initially developed in the context

of cellular materials applications with the support of the Defense Advanced Research
Projects Agency (DARPA) (N00014-99-1-1016) from 1999 to 2002, monitored by Dr. Leo
Christodoulou, and by the Office of Naval Research (ONR) (N0014-99-1-0852), under Dr.
Steven Fishman. Support from 2002 to 2007 by the Air Force Office of Scientific Research
(AFOSR) Multi-University Research Initiative Grant on Energetic Structural Materials
(1606U81, Craig Hartley, monitor) is gratefully acknowledged, as is more recent, ongoing
support of the NSF (I/UCRC) Center for Computational Materials Design (CCMD), a joint
venture of partner institutions Penn State and Georgia Tech.
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