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Preface

Lattice dynamics now forms an important part of any course in solid state physics.
Though all textbooks on solid state physics contain a few chapters on it, this topic
is not adequately treated. The main reason for this may be that in a regular textbook,
space has to be equitably distributed between different aspects of solid state physics.
The authors and some other teachers have always felt that in teaching lattice
dynamics to postgraduate classes it was necessary to supplement the textbooks
by review articles and by proceedings of conferences on neutron scattering. -

The Physics Panel of the National Council of Science Education (India)
asked us to prepare a monograph on some topic of interest to us and which will
also be useful to postgraduate students and teachers. Having earlier felt the neces-
sity of a text on lattice dynamics, which will discuss neutron scattering experiments
in some detail, we decided to write a monograph on this topic. Another reason
for choosing this topic was that a number of physicists in India have made impor-
tant contributions to it.

In this monograph we have discussed topics which tie up closely with lattice
. dynamics and its study by neutron scattering experiments. Ionic crystals have not
: been discussed in great length. We would have liked to include a chapter on M &ss-
bauer effect, but a separate monograph is being planned on this topic under the
NCSE program.

Some problems have been added at the end of most chapters. These problems
are intended to amplify the points which we thought would be difficult to include
in the main text. References of a general nature are indicated by an asterisk. '

The authors are indebted to Prof. F. C. Auluck, Prof. R. N. Dogra, Prof.
M. S. Sodha, and Prof. S. C. Jain for their interest and support of this work. The
authors are grateful to Dr. R. D. Deshpande for his interest in the publication of
this monograph. Thanks are also due to Mr. V. N. Wanchoo and Dr. N. K. Bansal
for their help in the early stages of the preparation of the manuscript. The authors
would also like to thank Dr. J. Mahanty, Dr. S. K. Joshi, Dr. B. Sharan, and
Dr. B. B. Tripathi for their comments and suggestions. Finally, the efficient typing
of Mr. V. N. Sharma, Mr. T. N. Gupta, and Mr. O. P. Virmani is gratefully acknow-
ledged.

Delhi A K. G.
February 1971 L.S. K.
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CHAPTER 1

Introduction

The study of lattice dynamics now forms an important part of any course in solid
state physics. The vibrations of atoms in a crystal not only determine its thermal
properties but also govern phenomena like diffuse scattering of X-rays, neutron
scattering, spin-lattice relaxation, etc. In order to understand any of these pheno-
mena it is necessary to develop the theory of vibration of atoms, that is, the theory
of lattice dynamics.

In 1819 Dulong and Petit discovered emperically that the specific heat per
gram atom of a crystal of any element was 3R, R being the gas constant. This law
was found to hold for most elements at room temperature and above. It was,
however, soon discovered that at low temperatures the specific heat of crystals
was considerably lower. In 1907 Einstein for the first time developed the quantum
theory of specific heat of crystals. He assumed that the atoms in a crystal behaved
like quantum oscillators, vibrating with a fixed frequency. All oscillators were
supposed to vibrate independently without any interaction with each other.
Based on this hypothesis, Einstein developed his theory of specific heat. This
theory did explain the decrease in specific heat with decreasing temperature,
but it turned out that the decrease predicted by theory was far more rapid than
what was observed. This discrepancy between theory and experiment was removed
in 1912 by Debye and almost simultaneously by Max Born and von K4rman.
They argued that because of the strong binding between different atoms in a crystal
it was incorrect to assume all atoms to be independent oscillators. When one atom
starts to oscillate it sends a wave through the entire crystal, causing many other
atoms to oscillate. On the basis of this hypothesis Debye developed the theory of
specific heat that was remarkably successful in explaining the temperature varia-
tion of specific heat of most metals. However, a few exceptions, such as graphite,
bismuth, selenium, and tellurium, were discovered and we now understand why
the Debye theory fails in these cases.

It was realized fairly early that since specific heat was an integral measurement,
the agreement between theory and experiment could not be regarded as a sensitive
test for Debye’s theory of lattice dynamics. This theory was also used successfully
to explain the effect of temperature on the intensity of Laue spots in X-ray diffrac-
tion studies. Even so, since this effect also depended on the overall frequency spec-
trum of the crystal, one could not deduce the details of the spectrum from such a
study. Some attempts have been made to devise methods for obtaining the fre-
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quency distribution function directly from the specific heat data, but they have not
been very successful.

With the availability of high intensity thermal neutron beams from reactors,
the very nature of the problem was changed. It became possible to study processes
involving single lattice waves, and the frequency distribution function and the
dispersion relation could be experimentally determined. This stimulated much
work both in theory and experiment. It turned out that the theory of lattice dyna-
mics was not as simple as was thought at one time. A number of models have been
proposed for describing the atomic vibrations, and a good amount of work in this
field has been done by physicists in India.

The atomic vibrations in a crystal can be quantized, and this: gives rise to
quasi-particles called phonons. Neutron scattering from a crystal is usually analyzed
in terms of the number of phonons exchanged with the crystal. Zero phonon
process corresponds to elastic scattering, since no energy change of the crystal
is involved. This is the usual Bragg scattering, and a study of this scattering process
gives us information about the structure of the crystal. Inelastic scattering, that is,
the scattering process in which one or more phonons are either created or absorbed
in the crystal, gives us information about lattice dynamics. This is discussed in
detail in Chapter 9.

In Chapter 2 we have developed the theory of lattice dynamics, under the
harmonic approximation, that is, in writing the potential energy of a vibrating
atom we retain terms only up to the second power in the displacement of the atom.
This implies that there is no phonon-phonon interaction and hence these quasi-
particles have an infinite lifetime. This also means that the energy of a phonon is
exactly defined. The neglect of higher-order terms will prevent us from discussing
anharmonic effects, that is, the phonon-phonon interaction which leads to finite
lifetime for a phonon. The finite lifetime of a phonon implies a spread in its energy
and when a neutron with a well-defined energy is scattered by the absorption or
emission of a phonon, it will also show a spread in energy corresponding to the
spread in energy of the phonon. _

In Chapter 3, the lattice modes are quantized and the concept of phonon is
justified. Interesting information about the propagation of low-frequency waves
through a crystal can also be obtained from the macroscopic theory of elasticity.
This is considered in Chapter 4. In Chapter 5 we have considered lattice vibrations
of three-dimensional cubic crystals.

In Chapter 6 the phenomenological theory of lattice dynamics is developed
and the Debye approximation is justified. We have-also evaluated the correction
to the Debye approximation that arises from surface modes. This correction be-
comes important when thermal properties of microcrystallites are considered.
In Chapter 7 we discuss the theory of specific heat of solids. The last two chapters
deal with neutron scattering and we have tried to explain how neutron scattering
experiments are used to determine the frequency distribution function and dis-
persion relation for lattice modes.



CHAPTER 2

Wave Propagation in One-dimensional Lattices

Before discussing the propagation of elastic waves through a three-dimensional
crystal, it is instructive and also simpler to study the vibrations of particles lying
along a single straight line. As we shall see, many of the vibrational properties of
three-dimensional crystals are, in a qualitative way, also possessed by the one-
dimensional chain. An added advantage in discussing the chain first is that we
avoid mathematical complexities and can obtain better physical understanding

of the results.
]
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Fig. 2.1. A chain consisting of equally spaced identical particles held together by elastic
forces.

Let us consider a lattice consisting of an infinite number of equally spaced
identical particles of mass M, lying along a straight line (Fig. 2.1). We assume that
the particles are held together by elastic forces obeying Hooke’s law. Since the
chain is infinite, we may choose any particle as the origin. The particles on the
right are successively numbered 1,2,3,..., and those on the left of the origin are
numbered —1,—2,—3,.... The equilibrium spacing between the particles will be
denoted by a. These particles can vibrate either longitudinally (along the chain)
or transversely (at right angles to the chain). We will consider these two types of
vibrations separately.

LONGITUDINAL VIBRATIONS

Let us first consider the case in which the particles execute longitudinal vibrations.
The displacement of the nth particle from its equilibrium position will be denoted
by u,, so that at any instant of time the coordinate of the nth particle, x,, will be
given by '

X, = na + u,. (2.1)

The distance between the nth and the (n + m)th particle will be denoted by

Foontm = Xn+m — Xa

=ma+ U, , — U,. (2.2)

3



4  Wave propagation in one-dimensional lattices

Since we have assumed that the forces between particles obey Hooke’s law, the
energy of interaction between any two particles will be a function only of the dis-
tance between them:

Ur) = U(| Xy 4 m — Xu ). : (23)
This type of interaction is known as the central force interaction. A mechanical
analogy is a spring where the restoring force is proportional to the change in length
of the spring and is independent of any change in direction of the spring (without
change in length).

The total potential energy of the lattice, V, will be given by

V = Z Z U(x,, +m = xn)’ . (24)

n m>0
where m must be restricted to positive values so that the interaction between a
given pair of particles will be counted only once.t The displacement of the particles
from their respective equilibrium positions is assumed to be very small compared
to the interparticle distance. Since m > 0, x, , ,, — x, will always be positive,
and hence we have dropped the absolute sign from the parenthesis in Eq. (2.4).
Further, since u, < a, we may expand U(x, . ,, — X,) in a Taylor series about the
point x = ma:
U(xn+m - xn) = U(ma + Uy +m — un)

= U(ma) + (uy 4 m — u,)U'(ma)
+ %(un +m u")Z U”(ma) + ey . (25)

where U’(ma) and U”(ma) are dU(r)/dr and d?>U(r)/dr?, evaluated at r = ma.
Since u,, < a we will neglect all terms higher than the second power in Eq. (2.5).
This is known as the harmonic approximation. There are effects like thermal
expansion, which depend entirely on the higher-order terms—the so-called
anharmonic terms. We will confine ourselves to the harmonic approximation.
The expression for the potential energy is therefore,

V=Vo+ Y Y Uysm— t)UMa) + 33 Y Uy — un)iU”(ma), (2.6)

nm>0 nm>0

where

Vo=, > Ulma), 2.7

n m>0
is the potential energy of the lattice corresponding to the equilibrium configuration.
The coefficient U’(ma) of the linear terms in u, is zero, since the potential energy
is a minimum when particles are in their equilibrium positions. This also implies
that in the equilibrium position there is no net force on any particle.

1 If we want to sum over all m, both positive and negative, the expression for V will be

V:% ZZU(Ixn+m_xn|)~

m



Longitudinal vibrations S

From now on we will assume nearest-neighbor interaction: the energy of
interaction is taken to be zero between two particles which, in the equilibrium
configuration, are separated by a distance 2a or more. This assumption in no way
alters the essential character of vibrations of the chain (Problem 2.1). Hence we
may write

V="Vo+3U0"a) Y (ty 41 — un)™ (2.8)
If F, denotes the force acting on the pth particle, then it will be given by:
ov 0
Fp= —2m= —3U@) 5[y = ty— 1) + ey — )] (29)
p . p
since none of the other terms of the sum in Eq. (2.8) will contain u,. Thus
F,=U"a)[u,+1 —2u, +u,_,]. (2.10)

Equation (2.10) can readily be written down from simple physical arguments.
We assume the interaction between nearest neighbors to be given by Hooke’s
law with force constant f. The expression for F, in such a case must be

Fp = —f(“p — Up— 1) —f(“p = up+1)
=flup4y1 — 2u, + u,_ ), (2.11)
where f(u, — u, _ ,) is the restoring force acting on the pth particle because of its
relative displacement from the (p — 1)th particle. If we compare Eq. (2.10) with
Eq. (2.11) we find that U” plays the role of the force constant, provided it is assumed

that the force between the particles obeys Hooke’s law. However, a detailed
derivation of Eq. (2.10) is necessary to bring out the significance of harmonic

approximation.
Thus the equation of motion of the pth particle is
deu ” ’ ‘ V
M dtzp =U"(a)[u,+1 — 2u, + u,_ ] (2.12)
We attempt-to solve this equation by assuming a solution of a running wave typet
u, = Aexp[—i(wt — q&))], i=. /-1 (2.13)

t Classically it does not matter whether we take —i or +i in the exponent of Eq. (2.13).
However, in quantum mechanics the momentum operator p, is represented by — if(6/0x)
and the momentum of the wave will be given by
= —ih—u
pul’ 6)( 14
(for our case £, is x), or
pu, = —ihA(iq) exp [ —i(wt — gx)]
— hqup’

p = hq.
We thus get positive momentum for the wave traveling in the positive x-direction.
Had we taken + i, instead of —i in Eq. (2.13), we would have obtained negative momentum
for the wave traveling along the positive x-direction.

or
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where A is amplitude of the wave, £,( = pa) represents the equilibrium position
of the pth particle, and w( = 2znv) and g denote the angular frequency and wave
vector of the wave respectively. By substituting in Eq. (2.12) we get

—Mw? =U"(a)[e " — 2 + €], -

= —4U"(a) sin® qz_a’
or
. qa
= Wy sm7 , (2.14)
where
wo, = [4‘;4‘“)]%, 219

and the subscript L denotes the fact that the vibrations are longitudinal. Equation
(2.14), which gives us a relation between the angular frequency w and the propaga-
tion vector g, is known as the dispersion relation.

We impose the condition that w, the angular frequency, always be positive.
This explains why we take the modulus of the sine function in Eq. (2.14). Because
of this, w is a periodic function of q with period 2r/a (rather than 4x/a). This point
is discussed in detail later.

TRANSVERSE VIBRATIONS

We will now consider transverse vibrations of an infinite chain. We first show that
central forces alone cannot give rise to harmonic transverse vibrations. Let v,
be the displacement of the nth particle in a direction normal to the chain. The
displacements of all the particles are assumed to be in the same plane. Thus the
relative distance between the displaced particles at sites n + m and n will be given
by

(2.16)
where 7 is a unit vector along the chain and j is a unit vector normal to the chain —in

the direction of the displacement. We will assume that there is no displacement
of the particles along the chain, so that x, , ,, — x, = ma. Therefore

dzlxn+mi+un+mj—xni_v j )

d = [{mai —+ (U"+m - vn)j }2]% ‘

— 2 3
_ |:m2a2 {1 + (U, +,;:2a2 U,) }:l ’

(because i - j = 0). Thus to lowest power in (v, , ,, — v,)% We have

(vn +m vn)z

d ~ma+
2ma

(2.17)



Transverse vibrations 7

This expansion is justified because the displacements are very small compared
to the interparticle distance. If we assume that only the interactions among nearest
neighbors are important, the expression for the potential energy becomes

(Upsq — 0 )2
Vp=) Ula+—>—"—"|,
T g’ l: 2a
where the subscript T denotes transverse vibrations. Expanding U in a Taylor
series, we obtain

— )2 1 (v 4
VT e ; |:U(a) + (vn+ lza vn) U,(a) + 5 (Ln+;a2 l’n) U,,(a) + :| (218)

Since U'(a) = 0, we have

Ly (Un+1— v )*
Ve=Vo +3U"a) ) n*L __w (2.19)
n 4a

We observe that for the transverse case the potential energy depends on the
fourth power of the relative displacement. Therefore, if we consider only central
forces, the equation of motion of a chain that vibrates transversely will be entirely
different from that of a chain that vibrates longitudinally. Hence the usual type of
transverse modes cannot be explained on the basis of central forces and harmonic

approximation alone.
] |
9 |
| | Vn+1
Va-1

| I | vn

I L i

Fig. 2.2. Transverse vibrations of a one-dimensional chain consisting of equally spaced
identical particles. The open and the solid circles represent, respectively, the displaced
and the equilibrium positions of the particles.

However, since transverse vibrations. of chains are observed, some other form
of restoring force must also exist. The other force is the so-called angular force,
which depends on the angle which the line joining the moving particles makes
with the equilibrium position of the line.t Figure 2.2 shows the transverse dis-
placement of the particles. It is clear that when the particles n + 1 and n are in the
positions shown, the angle 6 through which they have turned will be given by

g lnrr = U (2.20)
a

Let us assume that the angular force is proportional to 6, with f; as the pro-
portionality constant. This force is always directed towards the equilibrium site

t The vibrations of a layer lattice taking account of angular forces have been studied by
Kothari et al. (1971).
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and hence acts normally to the direction of the chain. Thus, assuming interaction
between nearest neighbors only, the force on the pth particle will be given by

v

U, — Up4y v, — U,_4
Fyom sffpefetll s et =22, 2.21)
Consequently, the equation of motion will be
d*v
M—d?zﬂsz [v, 4+ 1. — 20, + B, 1] (2.22)

As in the case of longitudinal vibrations, we solve the above equation by assuming
a running wave solution of the type given by Eq. (2.13). This leads to the following
dispersion relation

. qa
wzwwsm%, (2.23)
where
4fr | '
wor =|—1 . 2.24
e[ o
| . | |f~
- —“0L -
27 1N pan
/ | 3 | \ / |
// | w \ / -~
a sl N i
P | £ | Ry / |
!/, | S | \\ /, I
iy | 8 1 \ '/ |
Ve | = | N |
\ | : N; |
\ 7/ | \ 7 |
\/ | | \/ |
V ] | A\ ]
-2x/a -x/a 0 x/a 2x/a 3x/a

Wave vector g —>

Fig. 2.3. The dependence of frequency on the wave vector for a one-dimensional chain.

We notice that the dispersion relation for the transverse mode is similar to
the one derived for the longitudinal mode, except for the maximum frequency
o7, Which is usually less than w,,. The w-vs-q curve is plotted in Fig. 2.3 and the
transverse branch is shown to lie below the longitudinal branch (because wg;
is assumed to be less than w,;). In general, for a linear chain of identical particles
there will be one longitudinal branch and two transverse branches corresponding
to the two independent mutually perpendicular directions of vibration of the parti-
cles.

From Egs. (2.14) and (2.23), we find that corresponding to each branch there
exists a certain maximum frequency (wg,, for longitudinal vibrations and wqy for
transverse vibrations) beyond which no waves can be propagated through the
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chain (Fig. 2.3). The chain may thus be considered as a low-pass filter which would
transmit only in the frequency range between zero and w,,,,. (We will later discuss
a system which transmits frequencies in the ranges 0 < w < w; and w, < © < w;,
[w; > w, > 3], but not in the range w; < ® < w,.)

Let us consider what happens if a longitudinal wave with @ exceeding w,,,
is imposed on the chain. Since

. ,qa
w? = w}, sin? R

it is obvious that g must be complex. Let

» qg=o+ip (2.25)
(where o and f are real), so that}
qa oa Pa Pa
sin 7 = = sin > cosh > + zcos > smh 5 (2.26)
Since w? is real, we must have
0057 sinh /%a =0.

If sinh (ﬁd/Z) = 0, then fa = 0; which implies that g must be real and therefore
o < wor. Hence for w to be greater than w,;, cos (xa/2) must be zero, or aa/2 =
n/2. Thus

T
o = real part of g = —.
a
This leads to

2 _ 2 2 @
w* = wg, cosh A 2.27)

The variation of the real and imaginary parts of ¢ with w is shown in Fig. 2.4.
Substituting the value of g from Eq. (2.25) with a = n/a in Eq. (2.13), we obtain
u, = A(—1)P exp [ —iowt — paf].

From this we see that all frequencies above w,, will be attenuated, the attenuation

being stronger for larger w. We will be interested only in the frequency range

0 < w < w4 that is in waves that are propagated through the lattice.
Returning to Eqgs. (2.14) and (2.23), we find that if ga < 1

W~ W, qz_a' (2.28)

That is, the frequency is proportional to the wave vector q. (We have dropped the
subscript T or L, as the present consideration is equally valid for both transverse

t sin i@ = i sinh 6, cos i6 = cosh 0.
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and longitudinal vibrations.) Since for a continuous string the frequency is always
proportional to the wave vector, we note that an array of point particles and a
continuous string give the same results only if ga < 1—that is, when the wavelength
is large compared to the interparticle distance. The same holds for sound waves
in a solid. The maximum frequency w, is usually of the order of 1013 sec ™!, whereas

-
-~
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| e
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Fig. 2.4. The variation of the real and imaginary parts of the wave vector with frequency.

the highest frequency that can be artificially generated (by a thin slice of quartz
crystal) is nearly 10° sec ™ . Thus if one is concerned with sound waves propagating
through a solid one need consider only a very small range of frequencies near zero
and hence the assumption ga < 1 will be a very good approximation.

From Egs. (2.14) and (2.23) we notice that if q is replaced by

2ntm
9n =49 + ——, (2.29)
a
withm = +1, +2, ..., the equation remains the same. Thus the state of vibration

of an array of mass points corresponding to a wave vector g will be identical to
the state corresponding to any of the other wave vectors g + 2nm/a. Thus, if
we want to have one-to-one correspondence between the states of vibration of a



